
Deformation Theory for Vector Bundles
Nitin Nitsure

Abstract

These expository notes give an introduction to the elements of deforma-
tion theory which is meant for graduate students interested in the theory of
vector bundles and their moduli. The original version appeared in the vol-
ume ‘Moduli spaces and vector bundles’ LMS lecture note series 359 (2009)
in honour of Peter Newstead.
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1 Introduction : Basic examples

For simplicity, we will work over a fixed base field k which may be assumed to be
algebraically closed. All schemes and all morphisms between them will be assumed
to be over the base k, unless otherwise indicated. In this section we introduce four
examples which are of basic importance in deformation theory, with special emphasis
on vector bundles.

Basic example 1: Deformations of a point on a scheme
We begin by setting up some notation. Let Artk be the category of all artin local
k-algebras, with residue field k. In other words, the objects of Artk are local k-
algebras with residue field k which are finite-dimensional as k-vector spaces, and
morphisms are all k-algebra homomorphisms. Note that k is both an initial and a
final object of Artk. By a deformation functor we will mean a covariant functor
F : Artk → Sets for which F (k) is a singleton point. As k is an initial object of
Artk, this condition means that we can as well regard F to be a functor to the
category of pointed sets.
For any A in Artk, let hA : Artk → Sets be the deformation functor defined
by taking hA(B) = Homk-alg(A,B). Recall the well-known Yoneda lemma, which
asserts that there is a natural bijection Hom(hA, F ) → F (A) under which a natural
transformation α : hA → F is identified with the element α(idA) ∈ F (A). To
simplify notation, given any natural transformation α : hA → F , we denote again
by α ∈ F (A) the element α(idA) ∈ F (A). Any element α ∈ F (A) will be called a
family parametrised by A (the reason for this nomenclature will be clear from the
examples). Given f : B → A and β ∈ F (B), we denote the family F (f)β ∈ F (A)
simply by β|A, when f is understood.

Let Ârtk denote the category of complete local noetherian k-algebras with residue
field k as objects and all k-algebra homomorphisms as morphisms. Given any R
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in Ârtk, we denote by hR : Artk → Sets the deformation functor defined by
taking hR(A) = Homk-alg(R,A). A deformation functor F will be called pro-
representable if there exists a natural isomorphism r : hR → F where R is in

Ârtk. The pair (R, r) will be called a universal pro-family for F . (To understand
this name, see Lemma 2.7.)
If X is any scheme over k and x ∈ X a k-rational point, we define a deforma-
tion functor hX,x by taking for any A in Artk the set hX,x(A) to be the set of all
morphisms Spec A → X over k, for which the closed point of Spec A maps to x.
Any such morphism is the same as a k-algebra homomorphism OX,x → A. As the
maximal ideal of A is nilpotent, such homomorphisms are in a natural bijection
with k-algebra homomorphisms R → A where R denotes the completion of the local
ring OX,x at its maximal ideal. This shows that the above functor hX,x is naturally
isomorphic to hR, hence is pro-representable.
The functor hX,x is the ultimate example of a deformation functor in the sense that
it is the simplest and has the best possible properties. One of the aims of the general
theory is to determine when a given deformation functor is of this kind, at least, to
determine whether it shares some nice properties with hX,x.

Basic example 2: Deformations of a coherent sheaf
Let X be a proper scheme over a field k, and let E be a coherent sheaf of OX-
modules. The deformation functor DE of E is defined as follows. For any A in
Artk, we take DE(A) to be the set of all equivalence classes of pairs (F , θ) where
F is a coherent sheaf on XA = X ⊗k A which is flat over A, and θ : i∗F → E is
an isomorphism where i : X →֒ XA is the closed embedding induced by the residue
map A → k, with (F , θ) and (F ′, θ′) to be regarded as equivalent when there exists
some isomorphism η : F → F ′ such that θ′ ◦ (η|X) = θ. It can be seen that DE(A) is
indeed a set. Given any homomorphism f : B → A in Artk and an equivalence class
(F , θ) in DE(B), we define f(F , θ) in DE(A) to be its pull-back under the induced
morphism XA → XB (by applying −⊗B A). This preserves equivalences, and so we
get a functor DE : Artk → Sets.
If we assume that E is a vector bundle (that is, locally free), then flatness of F over
A just amounts to assuming that F is a vector bundle on XA.

Basic example 3: Deformations of a quotient
Let X be a proper scheme over k, E be a coherent OX-module over X, and q0 :
E → F0 be a coherent quotient OX-module. For any A in Artk, let EA denote the
pull-back of E to XA = X ⊗k A. Let i : X →֒ XA be the inclusion of the special
fiber of XA. We consider all OXA

-linear surjections q : EA → F such that F is flat
over A and the kernel of q|X : E → F|X equals ker(q0). For any such, there exists a
unique isomorphism θ : i∗F → F0 such that the following square commutes.

i∗EA = E
i∗q ↓ ↓ q0

i∗F
θ
→ F0

Two such surjections q : EA → F and q′ : EA → F ′ will be called equivalent if
ker(q) = ker(q′). For any object A of Artk, let Q(A) be the set of all equivalence
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classes of such q : EA → F (it can be seen that Q(A) is indeed a set). For any
morphism B → A in Artk, we get by pull-back (by applying − ⊗B A) a well-
defined set map Q(B) → Q(A), so we have a deformation functor Q : Artk → Sets
(note that Q(k) is clearly a singleton). Sending (q : EA → F) 7→ (F , θ), where
θ : i∗F → F0 is defined as above, defines a natural transformation Q → DF0

.
In the special case when E = OX , a coherent quotient q0 : E → F0 is the same as a
closed subscheme Y0 ⊂ X, and the functor Q becomes the functor of its proper flat
deformations of Y0 inside X.
If X is projective over X then by a fundamental theorem of Grothendieck there
exists a k-scheme Z = QuotE/X (called the quot scheme of E or the Hilbert scheme
of X when E = OX), and q0 corresponds to a k-valued point z on Z. The functor Q
in this case becomes just hZ,z, the deformation functor of a point on a scheme which
was our basic example 1 introduced above. However, even in the projective case,
it is useful to study the deformation theory of Q from a general functorial point of
view, as we will do later.

Basic example 4: Deformations of a scheme
Given a scheme X of finite type over a field k, let the deformation functor DefX :
Artk → Sets be defined as follows. For any A ∈ Artk, consider pairs (p : X →
Spec A, i : X → X0) where p is a flat morphism of k-schemes, X0 = p−1(Spec k) =
X|Spec k is the schematic special fibre of p, and i is an isomorphism. Denoting again
by i the composite X → X0 →֒ X, this means that the following square is cartesian.

X
i
→ X

↓ ↓ p

Spec k → Spec A

We say that two such pairs (p, i) and (p′, i′) are equivalent if there exists an A-
isomorphism between X and X

′ which takes i to i′. We take DefX(A) to be the set
of all equivalence classes of pairs (p, i). It can be seen that this is indeed a set, and
moreover it is clear that a morphism A → B in Artk gives by pull-back a well-defined
set map DefX(A) → DefX(B) which indeed gives a functor DefX : Artk → Sets.
The above example and its variants and special cases quickly bring out all the
possible complications in deformation theory, and have historically led to its major
developments. In these notes, which are designed to be a short introduction aimed
at graduate students interested in vector bundles, we will not treat this example in
any detail, but will just mention some basic results.

Relation with moduli functors
The theory of moduli may suggest that rather than the deformation functor DE of
basic example 2, we should consider the functor ME defined as follows. For any A in
Artk, we take ME(A) to be the set of isomorphism classes [F ] of coherent sheaves
F on XA that are flat over A, such that the restriction F|X to the special fiber of
Spec A is isomorphic to E. Note that this does not involve a choice of a specific
isomorphism θ : F|X → E, so this functor differs from the deformation functor DE.
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Clearly, there is a natural transformation DE → ME, which forgets the choice
of θ. If the sheaf E has the special property that for each A and each (F , θ) in
DE(A) every automorphism of E is the restriction of an automorphism of F , then
the natural transformation DE → ME is an isomorphism. For example, this may
happen when E is stable in a certain sense, where the stability condition ensures
that all automorphisms of E are just scalars. If moreover a fine moduli scheme M
for stable sheaves exists, with E defining a point [E] ∈ M , then ME is the same
as the corresponding local moduli functor hM,[E] which is a case of the deformation
functor of our basic example 1. Hence in this case, DE will just be hM,[E], and the
study of DE will shed light on the local structure of M around [E].
But even when the above condition (that automorphisms of E must be extendable
to any infinitesimal family F around it) is not fulfilled, the study of the deformation
functor DE continues to be of importance, for it sheds light on the local structure of
the corresponding moduli stacks. On the other hand, the functor ME, which may
at first sight look more natural than DE, does not have good properties in general.
The Example 3.9 illustrates this point.
Similar remarks apply to the functor DefX of basic example 4 vis à vis the corre-
sponding local moduli functor.

2 General theory

Tangent space to a functor
2.1 Let Vectk be the category of all vector spaces over k, and let FinVectk

be its full subcategory consisting of all finite dimensional vector spaces. Let ϕ :
FinVectk → Sets be a functor into the category of sets which satisfies the follow-
ing:
(T0) For the zero vector space 0, the set ϕ(0) is a singleton set.
(T1) The natural map βV,W : ϕ(V × W ) → ϕ(V ) × ϕ(W ) induced by applying ϕ
to the projections V × W → V and V × W → W is bijective.
Then for each V in FinVectk, there exists a unique structure of a k vector space on
the set ϕ(V ) which gives a lift of ϕ to a k-linear functor which we again denote by
ϕ : FinVectk → Vectk. The addition map ϕ(V ) × ϕ(V ) → ϕ(V ) is the composite

ϕ(V ) × ϕ(V )
β−1

V,V

→ ϕ(V × V )
ϕ(+)
→ ϕ(V )

where β−1
V,V is the inverse of the natural isomorphism given by the assumption on

ϕ, and + : V × V → V is the addition map of V . Also, for any λ ∈ k, the scalar
multiplication map λϕ(V ) : ϕ(V ) → ϕ(V ) is just ϕ(λV ).

2.2 The tangent space Tϕ to a functor ϕ : FinVectk → Sets which satisfies
(T0) and (T1) is defined to be the vector space ϕ(k). This may not necessarily be
finite dimensional. We now show that there exists a linear isomorphism

Ψϕ,V : ϕ(V ) → Tϕ ⊗k V
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which is functorial in both V and ϕ. For this, choose an isomorphism g : V → kn,
and apply (T1) repeatedly to get a composite isomorphism

ϕ(V )
ϕ(g)
→ ϕ(kn)

β
→ ϕ(k)n = ϕ(k) ⊗ kn id⊗ϕ(g)−1

→ ϕ(k) ⊗ V = Tϕ ⊗ V

which can be verified to be independent of the choice of g.
Thus, a functor ϕ : FinVectk → Sets satisfying (T0) and (T1) is completely
described by its tangent space Tϕ. Conversely, given any vector space T , the asso-
ciation V 7→ T ⊗ V defines a functor ϕ that satisfies (T0) and (T1), for which Tϕ

is just T .

Artin local algebras
If A1 and A2 are local k-algebras with residue field k, that is, the composite k →
Ai → Ai/mi is an isomorphism where mi ⊂ Ai is its maximal ideal, then any k-
algebra homomorphism f : A1 → A2 is necessarily local, that is, f−1(m2) = m1.
If f : B → A and g : C → A are homomorphisms in Artk, the fibred product

B ×A C = {(b, c)|f(b) = g(c) ∈ A}

with component-wise operations is again an object in Artk (Exercise). Also, for
homomorphisms A → B and A → C in Artk, the tensor product B ⊗A C is again
an object in Artk (Exercise). Thus, Artk admits both fibred products (pull-backs)
B ×A C and tensor products (push-outs) B ⊗A C.
As k is the final object in Artk, the fibred product A ×k B serves as the direct
product in the category Artk, and as k is the initial object in Artk, the tensor
product B ⊗A C serves as the Co-product in the category Artk.
For a k-vector space V , let k〈V 〉 = k ⊕ V with ring multiplication defined by
putting (a, v)(b, w) = (ab, aw + bv), and obvious k-algebra structure. Note that
k〈V 〉 is artinian if and only if V is finite dimensional. It can be seen that V 7→ k〈V 〉
defines a fully faithful functor FinVectk → Artk, and its image consists of all A
in Artk with m

2
A = 0, as such an A is naturally isomorphic to k〈mA〉. The functor

V 7→ k〈V 〉 takes the zero vector space (which is both an initial and final object of
FinVectk) to the algebra k (which is both an initial and final object of Artk). If
V → U and W → U are morphisms in FinVectk, then it can be seen that the
natural map

k〈V ×U W 〉 → k〈V 〉 ×k〈U〉 k〈W 〉

(which is induced by the projections from V ×U W to V and W ) is an isomorphism.
Therefore the functor FinVectk → Artk : V 7→ k〈V 〉 preserves all finite inverse
limits, in particular, it preserves equalisers.
For any deformation functor F : Artk → Sets, let the composite FinVectk →
Artk → Sets be denoted by ϕ. As F (k) is a singleton, ϕ(0) = F (k〈0〉) = F (k) = 0,
so ϕ satisfies the condition (T0) on functors FinVectk → Sets. We now intro-
duce another condition (Hǫ) on a deformation functor F , which just amounts to
demanding that ϕ should satisfy (T1).
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2.3 Deformation condition (Hǫ) For any two A and B in Artk with m
2
A = 0

and m
2
B = 0, the map F (A×k B) → F (A)×F (B) that is induced by applying F to

the projections of A ×k B on A and B is a bijection.
Note that k〈k〉 is just the ring k[ǫ]/(ǫ2) of dual numbers over k.

2.4 The tangent space TF to a deformation functor F that satisfies (Hǫ) is
defined to be the resulting k-vector space TF = F (k[ǫ]/(ǫ2)) = ϕ(k) = Tϕ.

Exercise 2.5 Let X be a k-scheme, x ∈ X a k-valued point, and let F be the
deformation functor hX,x of basic example 1. Then TF equals the tangent space
TxX, which is the dual to mx/m

2
x where mx ⊂ OX,x is the maximal ideal of x. This

is the motivation for defining TF for deformation functors.

Exercise 2.6 Universal first-order family Let a deformation functor F satisfy
(Hǫ), and moreover let the resulting tangent vector space TF be finite dimensional.
Let T ∗F be the dual vector space of TF , and let A = k〈T ∗F 〉 ∈ Artk. Note that
TA = TF . The identity endomorphism θ ∈ End(TF ) = TF ⊗ T ∗F = F (A) defines a
family (A, θ). Show that this family has the following properties.
(i) The map θ : hA → F induces the identity isomorphism TF → TF .

(ii) Let (R, r) be any pro-family for F parametrised by R ∈ Ârtk. Let R1 = R/m2
R

and let r1 = r|R1
. Then there exists a unique k-homomorphism A → R1 such that

r1 ∈ F (R1) is the image of θ ∈ F (A).
In view of property (ii), the family (A, θ) is called as the universal first-order family
for F .

Pro-families and limit Yoneda lemma
Recall that the Yoneda lemma asserts the following. If C is any category, A is
any object of C and hA = Hom(A,−) the corresponding representable functor, and
F : C → Sets another functor, then there is a natural bijection Hom(hA, F ) →
F (A), under which a natural transformation α : hA → F is mapped to the element
α(idA) ∈ F (A). By abuse of notation, we denote α(idA) just by α ∈ F (A).
A pro-family for a deformation functor F : Artk → Sets is a pair (R, r) where R

is in Ârtk and r ∈ F̂ (R) where by definition

F̂ (R) = lim
←

F (R/mn)

where m ⊂ R is the maximal ideal. By the following lemma, r is same as a morphism
of functors hR → F .

Lemma 2.7 (Limit Yoneda Lemma)

Let F : Artk → Sets be a deformation functor, and let F̂ : Ârtk → Sets be
its prolongation as constructed above. Let αR : Hom(hR, F ) → F̂ (R) be the map
defined as follows. Given f ∈ Hom(hR, F ), and n ≥ 1, let fR/mn(qn) ∈ F (R/mn)
denote the image of the quotient qn ∈ Homk-alg(R,R/mn). This defines an inverse

system as n varies, so gives an element αR(f) = (f(R/mn)(qn))n∈N ∈ F̂ (R). The
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map αR : Hom(hR, F ) → F̂ (R) so defined is a bijection, functorial in both R and
F . �

We leave the proof of this lemma (which is a straight-forward generalisation of the
usual Yoneda lemma) as an exercise.

Versal, miniversal, universal families
For a quick review of basic notions about smoothness and formal smoothness, see
for example Milne [Mi].
Let F : Artk → Sets and G : Artk → Sets be functors. Recall that a morphism of
functors φ : F → G is called formally smooth if given any surjection q : B → A
in Artk and any elements α ∈ F (A) and β ∈ G(B) such that

φA(α) = G(q)(β) ∈ F (A),

there exists an element γ ∈ F (B) such that

φB(γ) = β ∈ G(B) and F (q)(γ) = α ∈ F (A)

In other words, the following diagram of functors commutes, where the diagonal
arrow hB → F is defined by γ.

hA
α
→ F

q ↓ ր ↓ φ

hB
β
→ G

The morphism φ : F → G is called formally étale if it is formally smooth, and
moreover the element γ ∈ F (B) is unique.
Caution If the functors F and G are of the form hR and hS for rings R and S,
then φ is formally étale if and only if it is formally smooth and the tangent map
TR → TS is an isomorphism. However, if F and G are not both of the above form,
then a functor φ can be formally smooth, and moreover the map TF → TG can be an
isomorphism, yet φ need not be formally étale. It is because of this subtle difference
that a miniversal family can fail to be universal, as we will see in examples later.

2.8 A versal family for a deformation functor F : Artk → Sets is a pro-family
(R, r) (where R is a complete local noetherian k-algebra with residue field k, and

r ∈ F̂ (R)) such that the morphism of functors r : hR → F is formally smooth.
If (R, r) is a versal family, then for any A in Artk, the induced set map r(A) :
hR(A) → F (A) is surjective. For, given any v ∈ F (A), we can regard it as a
morphism v : hA → F . Now consider the following commutative square.

hk −→ hR

↓ ↓

hA
v

−→ F

By formal smoothness of hR → F , there exists a morphism u : hA → hR which makes
the above diagram commute. But such a morphism is just an element of hR(A)
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which maps to v ∈ F (A), which proves that r(A) : hR(A) → F (A) is surjective. In
other words, every family over A is a pull-back of the versal family over R, under a
morphism u : Spec A → Spec R. However, the morphism u need not be unique.
For any deformation functor F : Artk → Sets, the pointed set

TF = F (k[ǫ]/(ǫ2))

is called the tangent set to F , or the set of first order deformations under F .

2.9 A minimal versal (‘miniversal’) family (also called as a hull) for a defor-
mation functor F : Artk → Sets is a versal family for which the set map

dr : TR = hR(k[ǫ]/(ǫ2)) → F (k[ǫ]/(ǫ2)) = TF

is a bijection.

Exercise 2.10 If r : hR → F is a hull for a deformation functor F , then show that
F satisfies the deformation condition (Hǫ), and the bijection of sets dr : TR → TF

is in fact a linear isomorphism.

2.11 A universal family for a deformation functor F : Artk → Sets is a pro-
family (R, r) such that r : hR → F is a natural bijection. If a universal family
exists, it is clearly unique up to a unique isomorphism. A deformation functor
F : Artk → Sets is called pro-representable if a universal family exists. (The

reason for the prefix ‘pro-’ is that R need not be in the subcategory Artk of Ârtk.)

Exercise 2.12 Show the following.
(i) A pro-family (R, r) is universal if and only if the morphism of functors r : hR → F
is formally étale.
(ii) If F is pro-representable, then each hull pro-represents it.
(iii) A miniversal family that is not universal. Let F : Artk → Sets be the
functor A 7→ mA/m2

A. Show that a hull (R, r) for F is given by R = k[[t]] with

r = dt ∈ mR/m2
R = F̂ (R), but F is not pro-representable.

(iv) If a deformation functor F admits a hull and moreover if TF = 0 then F (A) is
the singleton set F (k) for all A in Artk.
(v) Let a deformation functor F have a versal family (R, r : hR → ϕ), such that
hR is formally smooth. Then F is formally smooth. Conversely, if F is formally
smooth, then each versal family is formally smooth.

Grothendieck’s pro-representability theorem
The following condition on a deformation functor F is obviously satisfied by any
pro-representable functor hR.
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2.13 Deformation condition (Lim) The functor F preserves fibred products:
the induced map F (B ×A C) → F (B)×F (A) F (C) is bijective for any pair of homo-
morphisms B → A and C → A in Artk.
As Artk has a final object and admits fibred products, this is equivalent to the
condition that F preserves all finite inverse limits in Artk, hence the name (Lim).
As (Lim) implies the deformation condition (Hǫ)(see 2.3 above), the set TF =
F (k[ǫ]/(ǫ2)) is naturally a k-vector space whenever (Lim) is satisfied.

Theorem 2.14 (Grothendieck) A deformation functor F is pro-representable if
and only if the following two conditions (Lim) and (H3) are satisfied.
(Lim) The deformation functor F preserves fibred products.
(H3) The k-vector space TF is finite dimensional.

Obviously, a pro-representable functor satisfies the above conditions (Lim) and
(H3). The sufficiency of these conditions follows from Schlessinger’s theorem (The-
orem 2.19), in which the conditions (Lim) and (H3) are weakened to the conditions
(H1), (H2), (H3) and (H4). In practice, the conditions (Hǫ)and (H3) are the eas-
iest to verify, the conditions (H1) and (H2) are of intermediate difficulty, while the
condition (Lim) is quite difficult to check in most examples. Hence Schlessinger’s
theorem is more useful in actual practice than Theorem 2.14.
The interested reader can take the proof of Schlessinger’s theorem, and shorten and
simplify it using the stronger hypothesis (Lim) to get a proof of Theorem 2.14.
Though this exercise makes a reversal of the actual history, it helps us understand
the Schlessinger theorem better.

Schlessinger’s conditions and the resulting group action

2.15 A small extension e in Artk is a surjective homomorphism B → A whose
kernel I satisfies mBI = 0. The small extension e is called a principal small
extension if moreover I is principal. We often use the notation e = (0 → I →
B → A → 0) for a small extension.

2.16 We now state the famous Schlessinger conditions (H1), (H2), (H3) and
(H4) on a deformation functor, and their variants (H1’) and (H2’).
(H1) For any homomorphisms B → A and C → A in Artk such that C → A is
a principal small extension, the induced map F (B ×A C) → F (B) ×F (A) F (C) is
surjective.
The condition (H1) is equivalent to the following seemingly stronger condition:
(H1’) For any homomorphisms B → A and C → A in Artk such that C → A is
surjective, the induced map F (B ×A C) → F (B) ×F (A) F (C) is surjective.
To see this, first note that a surjective homomorphism p : C → A can be factored in
Artk as the composite of a finite sequence of surjections C = Cn → Cn−1 → . . . →
C1 → C0 = A where n ≥ 1 is an integer such that m

n
C = 0, and Cj = C/mjI where

I is the kernel of C → A. Then each Ci → Ci−1 is a small extension. Moreover, a
small extension 0 → I → C → A → 0 can be factored as C = Cn → Cn−1 → . . . →
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C1 → C0 = A where n = dimk I, and each Ci → Ci−1 is a principal small extension.
Hence (H1’) follows by applying (H1) successively to a finite sequence of principal
small extensions.
(H2) For any B in Artk, the induced map F (B×k k[ǫ]/(ǫ2)) → F (B)×F (k[ǫ]/(ǫ2))
is bijective.
Similarly, the condition (H2) is equivalent to the following:
(H2’) Let B be any object in Artk, and let C = k〈V 〉 where V is a finite di-
mensional k-vector space. Then the induced map F (B ×k C) → F (B) × F (C) is
bijective.
Note As (H2’) implies (Hǫ), the set TF = F (k[ǫ]/(ǫ2)) gets a natural k-vector
space structure whenever (H2) is satisfied. Hence the condition (H3) below makes
sense whenever (H2) is satisfied.
(H3) The k-vector space TF is finite dimensional.
(H4) If B → A is a principal small extension, then the induced map F (B×A B) →
F (B) ×F (A) F (B) is a bijection.

2.17 (Definition of an action) Let F : Artk → Sets be a functor with F (k)
a singleton, which satisfies the Schlessinger conditions (H1) and (H2). Let 0 →
I → B → A → 0 be a small extension in Artk. We now define an action of
the group TF ⊗ I on the set F (B). Note that we have a k-algebra isomorphism
f : B ×k k〈I〉 → B ×A B defined by (b, b + u) 7→ (b, b + u) where b ∈ k is the residue
class of b. Applying F and using (H1’) and (H2’), the following composite map is
a surjection:

F (B) × TF ⊗ I = F (B) × F (k〈I〉)
F (f)
→ F (B ×A B) → F (B) ×F (A) F (B).

From its definition, the above map sends any pair (β, x) to a pair of the form (β, γ).
We define a map F (B)× TF ⊗ I → F (B) by (β, x) 7→ γ, and this can be verified to
define an action of the abelian group TF ⊗ I on the set F (B).

Proposition 2.18 Let F be a deformation functor which satisfies the Schlessinger
conditions (H1) and (H2). Then for any small extension 0 → I → B → A → 0
in Artk, the induced action of the abelian group TF ⊗ I on the set F (B) has the
following properties.
(i) The orbits of TF ⊗ I in F (B) are exactly the fibers of the map F (B) → F (A).
(ii) When A = k, the action is free.
(iii) The action is functorial in small extensions: given a commutative diagram

0 → I → B → A → 0
↓ ↓ ↓

0 → I ′ → B′ → A′ → 0

where the rows are small extensions, the induced map F (B) → F (B′) is equivariant
w.r.t. the induced group homomorphism TF ⊗ I → TF ⊗ I ′ and the actions of TF ⊗ I
and TF ⊗ I ′ on F (B) and F (B′).
(iv) The action is functorial in F : if F → G is a natural transformation of deforma-
tion functors which satisfy (H1) and (H2), then the induced set-map F (B) → G(B)
is equivariant w.r.t. the induced group homomorphism TF ⊗ I → TG ⊗ I.
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Proof Assertion (i) is just the surjectivity of F (B)×TF ⊗ I → F (B)×F (A) F (B).
(ii) amounts to the bijectivity of F (B) × TF ⊗ I → F (B) ×F (A) F (B) when A = k,
and so follows from (H2). (iii) and (iv) can be verified in a straight-forward manner
from the definition of the action. �

Schlessinger’s theorem

Theorem 2.19 (Schlessinger) A deformation functor F admits a hull if and only
if the conditions (H1), (H2), (H3) are satisfied. Moreover, F is pro-representable
if and only if the conditions (H1), (H2), (H3) and (H4) are satisfied.

Proof It is a simple exercise to show that if R is in Ârtk then hR satisfies (H1),
(H2), (H3) and (H4), and if r : hR → F is a hull for F then F satisfies (H1),
(H2) and (H3). We now prove the reverse implications.
Existence of hull together with (H4) implies pro-representability : We will
show that if (H4) is satisfied then any hull (R, r) is in fact a universal family. Let
0 → I → B → A → 0 be a small extension in Artk, and consider the action of
TF ⊗ I on F (B), which satisfies the properties given by Proposition 2.18. If (H4)
holds, then F (B ×A B) → F (B) ×F (A) F (B) is bijective, so the surjective map
F (B)× (TF ⊗ I) → F (B)×F (A) F (B) is actually a bijection, which means that each
fibre of F (B) → F (A) is a principal set (possibly empty) under the group TF ⊗ I.
To show that a miniversal family (R, r) is universal, we must show that the map
r(B) : hR(B) → F (B) is a bijection for each object B of Artk. This is clear for
B = k. So now we proceed by induction on the smallest positive integer n(B) for

which m
n(B)
B = 0 (for B = k we have n = 1). For a given B, suppose n(B) ≥ 2. Let

I = m
n(B)−1
B so that mBI = 0. Let A = B/I, so that n(A) = n(B) − 1, which by

induction gives a bijection r(A) : hR(A) → F (A). Consider the commutative square

hR(B) → F (B)
↓ ↓

hR(A) = F (A)

Note that each fiber of hR(B) → hR(A) is a principal TR⊗I-set over hR(A) (possibly
empty) and the map r(B) : hR(B) → F (B) is TF ⊗ I-equivariant, where we identify
TR with TF via r : hR → F . It follows that r(B) : hR(B) → F (B) is injective. As
r(B) : hR(B) → F (B) is already known to be surjective by versality, this shows
that r(B) is bijective, thus (R, r) pro-represents F .

(H1), (H2), (H3) imply the existence of a hull : The proof will go in two
stages. First, we will construct a family (R, r), which will be our candidate for a
hull. Next, we prove that the family (R, r) is indeed a hull.
Construction of a family (R, r) : Let S be the completion of the local ring at
the origin of the affine space Spec Symk(T

∗
F ). If x1, . . . , xd is a linear basis for T ∗F ,

then S = k[[x1, . . . , xd]]. Let n = (x1, . . . , xd) ⊂ S denote the maximal ideal of S.
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We will construct a versal family (R, r) where R = S/J for some ideal J . The ideal
J will be constructed as the intersection of a decreasing chain of ideals

n
2 = J2 ⊃ J3 ⊃ J4 ⊃ . . . ⊃ ∩∞q=2 Jq = J

such that at each stage we will have Jq ⊃ Jq+1 ⊃ nJq. Consequently, we will have
Jq ⊃ n

q which in particular means R/Jq ∈ Artk, and Jq/J is a fundamental system
of open neighbourhoods in R = S/J for the m-adic topology on R, where m = n/J is
the maximal ideal of R. Note that R will be automatically complete for the m-adic
topology.
Starting with q = 2, we will define for each q an ideal Jq and a family (Rq, rq)
parametrised by Rq = S/Jq, such that rq+1|Rq

= rq. We take J2 = n
2. On R2 =

S/n2 = k〈T ∗F 〉 we take q2 to be the ‘universal first order family’ θ (see Exercise 2.6
above). Having already constructed (Rq, rq), we next take Jq+1 to be the unique
smallest ideal in the set Ψ of all ideals I ⊂ S which satisfy the following two
conditions:
(1) We have inclusions Jq ⊃ I ⊃ nJq.
(2) There exists a family α (need not be unique) parametrised by R/I which prolongs
rq, that is, α|Rq

= rq.
Note that Ψ is non-empty as Jq ∈ Ψ, and Ψ has at least one minimal element as
S/nJq is artinian being a quotient of S/nq+1. We next show that if I1, I2 ∈ Ψ then
I0 = I1 ∩ I2 ∈ Ψ, hence the minimal element of Ψ is unique.
Consider the vector space Jq/nJq and its subspaces I1/nJq, I2/nJq, and I0/nJq. Let
u1, . . . , ua, v1, . . . , vb, w1, . . . , wc, z1, . . . , zd ∈ Jq be elements such that (i) u1, . . . , ua

(mod nJq) is a linear basis of I0/nJq, (ii) u1, . . . , ua, v1, . . . , vb (mod nJq) is a linear
basis of I1/nJq, (iii) u1, . . . , ua, w1, . . . , wc (mod nJq) is a linear basis of I2/nJq, and
(iv) u1, . . . , ua, v1, . . . , vb, w1, . . . , wc, z1, . . . , zd (mod nJq) is a linear basis of Jq/nJq.
Let I3 = (u1, . . . , ua, w1, . . . , wc, z1, . . . , zd)+nJq. Then we have I2 ⊂ I3, I1 ∩ I3 = I0

and I1 + I3 = Jq. Note that we have

S

I1

×“

S
I1+I3

”

S

I3

=
S

I1 ∩ I3

As I1 + I3 = Jq and I1 ∩ I3 = I0, this reads

S

I1

×“

S
nJq

”

S

I3

=
S

I0

As (H1) is satisfied, this gives surjection

F

(
S

I0

)
= F

(
S

I1

×“

S
Jq

”

S

I3

)
→ F

(
S

I1

)
×

F
“

S
Jq

” F

(
S

I3

)

Let α1 ∈ F (S/I1) and α2 ∈ F (S/I2) be any prolongation of rq ∈ F (S/Jq), which
exist as I1, I2 ∈ Ψ. Let α3 = α2|S/I3 . This defines an element

(α1, α3) ∈ F

(
S

I1

)
×

F
“

S
Jq

” F

(
S

I3

)
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Therefore by (H1) there exists α0 ∈ F (S/I0) which prolongs both α1 and α3 (it
might not prolong α2). This means α0 prolongs rq, so I0 ∈ Ψ as was to be shown.
Therefore Ψ has a unique minimal element Jq+1, and
We now choose rq+1 ∈ F (S/Jq+1) to be an arbitrary prolongation of rq (not claimed
to be unique).
Let J be the intersection of all the Jn, and let R = S/J . We want to define an

element r ∈ F̂ (R) which restricts to rq on S/Jq for each q. This makes sense and is
indeed possible, as we will show using the following lemma, whose proof we leave as
an exercise in the application of the familiar Mittag-Leffler condition for exactness
of inverse limits.

Lemma 2.20 Let R be a complete noetherian local ring with with maximal ideal m.
Let I1 ⊃ I2 ⊃ . . . be a decreasing sequence of ideals such that (i) the intersection
∩n≥1In is 0, and (ii) for each n ≥ 1, we have In ⊃ m

n. Then the natural map
f : R → lim←R/In is an isomorphism. Moreover, for any n ≥ 1 there exists an
q ≥ n such that m

n ⊃ Iq.

Let R = S/J as before, which is a complete noetherian local ring with with maximal
ideal m = n/J , and let Iq = Jq/J for q ≥ 2. By construction, we have Jq ⊃ Jq+1 ⊃
nJq, which means Iq ⊃ Iq+1 ⊃ mIq. In particular, this means Iq ⊃ m

q. As J = ∩Jq,
we get ∩Iq = 0. Therefore by Lemma 2.20, for each n ≥ 1 there exists a q ≥ n with
In ⊃ m

n ⊃ Iq, and in particular the natural map R → lim←R/In is an isomorphism.
Recall that we have already chosen an inverse system of elements rq ∈ F (R/Iq), as
R/Iq = S/Jq. For each n choose the smallest qn ≥ n such that m

n ⊃ Iqn
. We have

a natural surjection R/Iqn
→ R/mn. Let θn = rqn

|R/mn . Then from its definition
it follows that under R/mn+1 → R/mn, we have θn = θn+1|R/mn . Therefore (θn)
defines an element

r = (θn) ∈ lim
←

F (R/mn) = F̂ (R)

Verification that (R, r) is a hull for F : By its construction, the map TR → TF

is an isomorphism. So all that remains is to show that hR → F is formally smooth.
This means given any surjection p : B → A in Artk and a commutative square

hA
hu→ hR

hp ↓ ↓ r

hB
b
→ F

there exists a diagonal morphism hv : hB → hR (that is, a homomorphism v : R →
B) which makes the resulting diagram (the above square together with a diagonal)
commute. If dimk(B) = dimk(A) as k-vector space, then the surjection B → A
is an isomorphism, and we are done. Otherwise, we can reduce to the case where
dimk(B) = dimk(A)+1 (the case of a small extension) by factoring p : B → A as the
composite of a finite sequence of surjections B = Bn → Bn−1 → . . . → B1 → B0 = A
where each Bi → Bi−1 is a principal small extension, and lifting step-by-step, making
the analogue of the above square commute at each step.
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Suppose there exists a homomorphism w : R → B such that u = p◦w : R → B → A.
Using such a w, we will construct a homomorphism v : R → B as needed in the
proof of formal smoothness of hR → F , which satisfies both u = p ◦ v : R → B →
A and r ◦ hv = b : hB → F (B) → F (A).
Consider the following commutative square:

hR(B)
r(B)
→ F (B)

hR(p) ↓ ↓ F (p)

hR(A)
r(A)
→ F (A)

As B → A is a small extension, and as both hR and F satisfy (H1) and (H2), and
as TR = TF , there is a natural transitive action of the additive group TF ⊗ I on each
fibre of the set maps hR(B) → hR(A) and F (B) → F (A). By Proposition 2.18.(iv),
the top map r(B) : hR(B) → F (B) in the above square is TF ⊗ I-equivariant. As
u = p ◦ w, the elements r(B)w and b both lie in the same fibre of F (B) → F (A),
over r(A)u ∈ F (A). Therefore, there exists some α ∈ G (not necessarily unique)
such that b = r(B)w + α. Let v = w + α ∈ hR(B). By G-equivariance of r(B), we
get r(B)v = r(B)(w + α) = r(B)w + α = b. Also, as the action of G preserves the
fibers of hR(B) → hR(A), we have p ◦ v = p ◦ (w + α) = p ◦ w = u. Therefore v has
the desired property. It therefore just remains to show the existence of w : R → B
with p ◦ w = u. For this we first make the following elementary observation.

Remark 2.21 Let B → A be a surjection in Artk such that dimk(B) = dimk(A)+
1 (equivalently, the kernel I of the surjection satisfies mBI = 0 and dimk(I) = 1).
Suppose that B → A does not admit a section A → B. Then for any k-algebra
homomorphism C → B, the composite C → B → A is surjective (if and) only if
C → B is surjective.

We now show the existence of w : R → B with p ◦ w = u. As A is artinian, the
homomorphism u : R → A must factor via Rq = R/mq for some q ≥ 1, giving a
homomorphism uq : Rq → A. We are given a diagram

Spec A
u∗

q

→ Spec Rq → Spec R →֒ Spec S
↓ ↓

Spec B → Spec k

The morphism Spec S → Spec k is formally smooth, therefore, there exists a diagonal
homomorphism f ∗ : Spec B → Spec S which makes the resulting diagram commute.
Equivalently, there exists a k-algebra homomorphism f : S → B such that p ◦ f =
u ◦ π : S → A where π : S → R = S/J is the quotient map. Therefore, we get a
commutative square

S
f
→ B

↓ ↓

Rq
uq

→ A
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where the vertical maps are the quotient maps πq : S → S/Jq = Rq, and p : B → A.
This defines a k-homomorphism

ϕ = (πq, f) : S → Rq ×A B

The composite S → Rq ×A B → Rq is πq which is surjective. As by assumption
dimk(B) = dimk(A) + 1, it follows that

dimk(Rq ×A B) = dimk(Rq) + 1

Therefore by Remark 2.21, at least one of the following holds:
(1) The projection Rq ×A B → Rq admits a section (id, s) : Rq → Rq ×A B, in other
words, there exists some s : Rq → B such that p ◦ s = uq : Rq → A.
(2) The homomorphism ϕ : S → Rq ×A B is surjective.
If (1) holds, then we immediately get a lift

v : R → Rq
s
→ B

of u : R → A, completing the proof.
If (2) holds, then we claim that ϕ : S → Rq ×A B factors through S → S/Jq+1 =
Rq+1, thereby giving a homomorphism s′ : Rq+1 → B such that p ◦ s′ = uq+1 :
Rq+1 → A. This would immediately give a lift

v : R → Rq+1
s′
→ B

of u : R → A, again completing the proof.
Therefore, all that remains is to show that if ϕ : S → Rq ×A B is surjective, then
it must factor through S → S/Jq+1 = Rq+1. To see this, let K = ker(ϕ) ⊂ S, so
that Rq ×A B gets identified with S/K by surjectivity of ϕ. We have the families
rq ∈ F (Rq), a ∈ F (A) and b ∈ F (B) such that both rq and b map to a under Rq → A
and B → A. By (H1) the map F (Rq ×A B) → F (Rq) ×F (A) F (B) is surjective,
so there exists a family µ ∈ F (Rq ×A B) = F (S/K) which restricts to rq ∈ F (Rq).
This means the ideal K is in the set of ideals Ψ defined earlier while constructing
the nested sequence J2 ⊃ J3 ⊃ . . . of ideals in S. By minimality and uniqueness
of Jq+1, we have K ⊃ Jq+1. Therefore ϕ : S → Rq ×A B = S/K factors through
S → S/Jq+1 = Rq+1 as desired.
This completes the proof of Schlessinger’s theorem. �

Obstruction theory
A deformation functor F is called formally smooth or unobstructed if for each
surjection B → A in Artk the map F (B) → F (A) is surjective.
Note in particular that the deformation functor hX,x of basic example 1 is unob-
structed if and only X is smooth at x.
The above notion is generalised by the notion of an obstruction theory, defined
below. In these terms, F will be formally smooth if it admits an obstruction theory
(OF , (oe)) where OF = 0 (or more generally where each oe = 0).
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2.22 An obstruction theory (OF , (oe)) for a deformation functor F is a k-vector
space OF together with additional data (oe) consisting of a set-map oe : F (A) →
OF ⊗k I associated to each small extension e = (0 → I → B → A → 0) in Artk

such that the following conditions (O1) and (O2) are satisfied.
(O1) An element α ∈ F (A) lifts to an element of F (B) if and only if oe(α) = 0.
(O2) The map oe is functorial in e in the sense that given any commutative diagram

0 → I → B → A → 0
↓ ↓ ↓

0 → I ′ → B′ → A′ → 0

with rows e and e′ small extensions in Artk, the following induced square commutes:

F (A)
oe→ OF ⊗ I

↓ ↓

F (A′)
oe′→ OF ⊗ I ′

Let R be a complete noetherian local k-algebra with residue field k, so that R can
be expressed as a quotient S/J where S = k[[t1, . . . , tn]] is the power-series ring in
n variables where n = dimk m/m2, m ⊂ R is its maximal ideal, and J ⊂ S is an
ideal with J ⊂ n

2 where n = (t1, . . . , tn) is the maximal ideal of S. Given any small
extension e = (0 → I → B → A → 0) in Artk and a homomorphism α : R → A,
by arbitrarily lifting the generators ti we get a homomorphism α′ : S → B. This
induces a homomorphism α′′ : J → I, such that the following diagram commutes.

0 → J → S → R → 0
α′′↓ α′↓ α↓

0 → I → B → A → 0

As α′(n) ⊂ mB for the maximal ideal n ⊂ S, it follows that α′′(nJ) ⊂ mBI = 0, hence
α′′ induces a map α : J/nJ → I. We can regard this as an element α ∈ (J/nJ)∗⊗k I.
This defines a linear map

oe : F (A) → (J/nJ)∗ ⊗k I : α 7→ α

which can be seen to be well-defined (independent of the intermediate choice of α′)
and functorial in e. As the map α : R → A admits a lift to a map β : R → B if and
only if α′′ = 0 (equivalently, α = 0), the following proposition is proved.

Proposition 2.23 For any complete noetherian local k-algebra R with residue field
k, the above data ((J/nJ)∗, (oe)) is an obstruction theory for hR.

Remark 2.24 The above obstruction theory for hR is minimal in the sense that
given any other obstruction theory (V, ve) there exists a unique linear injection
(J/nJ)∗ → V making the obvious diagrams commute. Consequently, if the de-
formation functor F = hX,x has an obstruction theory (OF , (oe)) with dimx X =
dim TxX − dim OF , then X is a local complete intersection at x. (See for example
[F-G] Theorem 6.2.4 and its corollaries.)
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2.25 A tangent-obstruction theory (T 1, T 2, (φe), (oe)) for a deformation func-
tor F consists of finite-dimensional k-vector spaces T 1 and T 2 together with the
following additional data. For each small extension e = (0 → I → B → A → 0) in
Artk, we are given an action φe : F (B)× T 1 ⊗ I → F (B) satisfying the conclusions
(i)-(iii) of Proposition 2.18, and a set map oe : F (A) → T 2 ⊗ I such that (T 2, (oe))
is an obstruction theory for F . Then such an F automatically satisfies (H1), (H2)
and (H3), and (T 1, (φe)) is isomorphic to TF together with its natural action (ex-
ercise). Moreover, the action of T 1 ⊗ I on F (B) is free if an only if F also satisfies
(H4). Hence the following implications hold for any deformation functor F .

Pro-representability ⇒ Existence of a tangent-obstruction theory ⇒ Existence of a hull.

3 Calculations for basic examples

Preliminaries on flatness and base-change
All our examples involve flat families over base A, where A ∈ Artk, and so tools
for verification of flatness are important. Here we have gathered together all the
flatness statements we need. The reader in a hurry can skip this part and return to
it as needed.

Exercise 3.1 (i) (Nilpotent Nakayama) Let A be a ring and J ⊂ A a nilpotent
ideal (means Jn = 0 for n ≫ 0). If M is any A-module (not necessarily finitely
generated) with M = JM , then show that M = 0.
(ii) (Schlessinger [S] Lemma 3.3) Apply (i) to show the following. Let A be a
ring and J ⊂ A a nilpotent ideal. Let u : M → N be a homomorphism of A-modules
where N is flat over A. If u : M/JM → N/JN is an isomorphism, then u is an
isomorphism.
(iii) (Flat equivalent to free) Deduce from (ii) that flatness is equivalent to
freeness for any module over an artin local ring.
(iv) (Tor vanishing implies flatness) Let A be an artin local ring, and M
an A-module (not necessarily finitely generated). Then M is flat if and only if
TorA

1 (A/m, M) = 0.
(v) Let B be a commutative ring and I an ideal which satisfies I2 = 0. For any
B-module N , the sequence 0 → IN → N → N/IN → 0 is exact. Using this, show
that a B-module M is flat if and only if TorB

1 (K,M) = 0 for all B-modules K that
are annihilated by I.
(vi) (Flatness over arbitrary square-zero extensions) Let A = B/I where
the ideal I ⊂ B satisfies I2 = 0. It follows from the well-known ‘local criterion
for flatness’ that an R-module M is flat over B if and only if the following two
conditions are satisfied: (1) A ⊗B M is flat over A, and (2) TorB

1 (A,M) = 0 (the
second condition is equivalent to the injectivity of the scalar multiplication map
I ⊗B M → M).
Proof: Choose a short-exact sequence 0 → Z → F → M → 0 where F is a free
B-module. By condition (2), the sequence 0 → A⊗B Z → A⊗B F → A⊗B M → 0
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is exact. For any A-module K, by applying K ⊗A − to the above exact sequence
and using the condition (1), the sequence 0 → K ⊗B Z → K ⊗B F → K ⊗B M → 0
is exact. Hence by freeness of F , we must have TorB

1 (K,M) = 0. The result now
follows by applying the statement (v). �

The following lemma is an example of non-flat descent: even though Spec A′ →
Spec B and Spec A′′ → Spec B is not necessarily a flat cover of SpecB, we get a flat
B-module N by gluing together over A flat modules M ′ and M ′′ over A′ and A′′.

Lemma 3.2 (Schlessinger [S] Lemma 3.4) Let A′ → A and A′′ → A be ring
homomorphisms, such that A′′ → A is surjective with its kernel a nilpotent ideal
J ⊂ A′′. Let B = A′ ×A A′′, with B → A′ and B → A′′ the projections. Let
M , M ′ and M ′′ be modules over A, A′, A′′, together with A′-linear homomorphism
u′ : M ′ → M and A′′-linear homomorphism u′′ : M ′′ → M which give isomorphisms
M ′ ⊗A′ A → M and M ′′ ⊗A′′ A → M . Let N be the B-module defined by N =
M ′×M M ′′ = {(x′, x′′) ∈ M ′×M ′′ |u′(x′) = u′′(x′′) ∈ M}, where scalar multiplication
by elements (a′, a′′) ∈ B is defined by (a′, a′′) · (x′, x′′) = (a′x′, a′′x′′). If M ′ and M ′′

are flat modules over A′ and A′′ respectively, then N is flat over B. Moreover, the
projection maps N → M ′ and N → M ′′ induce isomorphisms N ⊗B A′

∼
→ M ′ and

N ⊗B A′′
∼
→ M ′′.

Proof We will prove this only in the case where M ′ is a free A′-module. Note that
if A′ is artin local, then we are automatically in this case by Exercise 3.1.(iii). This
is therefore the only case which we need in these notes.
Let (x′i)i∈I be a free basis for M ′ over A′. As M ′ ⊗A′ A → M is an isomorphism,
this gives a free basis u′(x′i) of M over A. As A′′ → A is surjective, any element∑

y′′j ⊗a′′j of M ′′⊗A′′ A equals x′′⊗1 for some (not necessarily uniquely determined)
element x′′ ∈ M ′′. Therefore the assumption of surjectivity of M ′′ ⊗A′′ A → M tells
us that u′′ : M ′′ → M must be surjective. Hence we can choose elements x′′i ∈ M ′′

such that u′′(x′′i ) = u′(x′i). Let N = ⊕IA
′′ be the free A′′-module on the set I, with

standard basis denoted by (ei)i∈I , and let u : N → M ′′ be defined by ei 7→ x′′i . Then
u : N/JN → M ′′/JM ′′ = M is an isomorphism. Therefore by Exercise 3.1.(ii), u is
an isomorphism, which shows M ′′ is free with basis (x′′i )i∈I . It follows that N is free
over B, with basis (x′i, x

′′
i )i∈I . It is now immediate that the projections N → M ′

and N → M ′′ induce isomorphisms N ⊗B A′
∼
→ M ′ and N ⊗B A′′

∼
→ M ′′. �

Corollary 3.3 (Schlessinger [S] Corollary 3.6) With hypothesis and notation
as in the above lemma, let L be a B-module, and q′ : L → M ′ and q′′ : L → M ′′ be
B-linear homomorphisms, such that the following diagram commutes:

L
q′′
→ M ′′

q′ ↓ ↓ u′′

M ′ u′

→ M

Suppose that q′ induces an isomorphism L ⊗B A′ → M ′. Then the map (q′, q′′) :
L → N = M ′ ×M M ′′ is an isomorphism of B-modules.
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Proof The kernel of the projection B → A′ is the ideal I = 0×J ⊂ A′×AA′′ = B.
The ideal I is nilpotent as by assumption J is nilpotent. The desired result follows
by applying Exercise 3.1.(ii) to the B-homomorphism u = (q′, q′′) : L → N , which
becomes the given isomorphism L⊗B A′ → M ′ on going modulo the nilpotent ideal
I ⊂ B. �

We will need the following well-known base change result of Grothendieck [EGA]
(for an exposition also see Hartshorne [H] Theorem 12.11).

Theorem 3.4 Let S = Spec(A) where A is a noetherian local ring. Let π : X → S
be a proper morphism and F a coherent OX-module which is flat over S. Let s ∈ S
be the closed point with residue field denoted by k. Let Xs be the fiber over s and
let Fs = F|Xs

denote the restriction of F to Xs. Let i be an integer, such that the
natural map H i(X,F) ⊗A k → H i(Xs,Fs) is surjective. Then for any A-module
M , the induced map H i(X,F) ⊗A M → H i(X,F ⊗OX

π∗M) is an isomorphism. In
particular if H i(Xs,Fs) = 0 then H i(X,F) = 0.

Both [EGA] and [H] give rather complicated proofs of the above, involving inverse limits over

modules of finite length (which in [H] is done by invoking the theorem on formal functions). These

can be replaced by a simple application of Nakayama lemma to the semi-continuity complex.

The following lemma will be used in the deformation theory for a coherent sheaf E
which is simple (that is, End(E) = k), to prove the theorem that the deformation
functor DE of such a sheaf is pro-representable.

Lemma 3.5 Let A be a noetherian local ring, let S = Spec A, and let π : X → S
be a proper morphism. Let X denote the schematic fiber of π over the closed point
Spec k, where k is the residue field of A. Let E be a coherent sheaf on X such that E
is flat over S. Assume that there exists an exact sequence F1 → F0 → E → 0 of OX-
modules, where F1 and F0 are locally free (note that this condition is automatically
satisfied when E itself is locally free, or when π : X → S is a projective morphism).
Let E = E|X be the restriction of E to X. If the ring homomorphism k → EndX(E)
(under which k acts on E by scalar multiplication) is an isomorphism, then for any
morphism f : T → S, the natural ring homomorphism

H0(T,OT ) → EndXT
((id×f)∗E)

(under which H0(T,OT ) acts on (id×f)∗E by scalar multiplication) is an isomor-
phism.

Proof Consider the contravariant functor End(E) from S-schemes to sets, which
associates to any S-scheme f : T → S the set End(E)(T ) = EndXT

((id×f)∗E).
Then by a fundamental theorem of Grothendieck (EGA III 7.7.8, 7.7.9), there
exists a coherent sheaf Q on S and a functorial H0(T,OT )-module isomorphism
αT : EndXT

((id×f)∗E) → HomT (f ∗Q,OT ). As S = Spec A, the coherent sheaf
Q corresponds to the finite A-module Q = H0(S,Q). Consider the isomorphism
αS : EndX(E) → HomS(Q,OS) = HomA(Q,A). Let θ : Q → A be the image of 1E
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under αS. By functoriality, the restriction θk : Q⊗Ak → k of θ to Spec k is the image
of 1E under the isomorphism αk : EndX(E) → Homk(Q ⊗A k, k) = HomA(Q,A).
As by assumption k → EndX(E) is an isomorphism, by composing with αk we get
an isomorphism k 7→ Homk(Q⊗Ak, k) under which 1 7→ θk. Hence Homk(Q⊗Ak, k)
is 1-dimensional as a k-vector space with basis θk. Therefore θk is surjective, and
so by Nakayama it follows that θ : Q → A is surjective. Hence we have a splitting
Q = A ⊕ N where N = ker(θ), under which the map θ : Q → A becomes the
projection p1 : A⊕N → A on the first factor. But as θk is an isomorphism, it again
follows by Nakayama that N = 0. This shows that θ : Q → A is an isomorphism.
Identifying Q with OS under θ, for any f : T → S we have HomT (f ∗Q,OT ) =
H0(T,OT ), and so we get a functorial H0(T,OT )-module isomorphism
αT : EndXT

((id×f)∗E) → H0(T,OT ) which maps 1 7→ 1. The composite map
H0(T,OT ) → EndXT

((id×f)∗E) → H0(T,OT ) is identity, so it follows that
H0(T,OT ) → EndXT

((id×f)∗E) is an isomorphism. �

Deformations of a coherent sheaf
Let X be a k-scheme of finite type, and E a coherent sheaf of OX-modules. We now
return to the deformation functor DE introduced earlier as our basic example 2.
The calculation of the tangent space to DE in the special case where E is locally free
is the first exposure many of us have had to deformation theory. So let us begin with
this illuminating case. Let the vector bundle E be described by transition functions
gi,j w.r.t an affine open cover Ui of X. If (F , θ) is a deformation of E over k[ǫ]/(ǫ2),
then F is again a vector bundle, which is trivial over each Ui[ǫ] = Ui×Spec k[ǫ]/(ǫ2).
Choose a trivialization for F|Ui[ǫ] which restricts under θ to the chosen trivialization
for E|Ui

, so that F is described by transition functions of the form gi,j + ǫhi,j. The
cocycle condition on the transition function now reads

hi,k = gi,jhj,k + hi,jgj,k

over Ui,j,k, which means the hi,j regarded as an endomorphism of E over Ui,j –
going from the basis restricted from Uj to the basis restricted from Ui – define
a Cech 1-cocycle (hi,j) ∈ Z1((Ui), End(E)). The corresponding cohomology class
h ∈ H1(X,End(E)) can be seen to be independent of the choice of open cover and
local trivializations, and so we get a map DE(k[ǫ]/(ǫ2)) → H1(X,End(E)). We
can define an inverse to this map by sending (hi,j) to the pair (F , θ) consisting of
the bundle F on X[ǫ] defined by transition functions gi,j + ǫhi,j, with θ induced by
identity. Hence the map DE(k[ǫ]/(ǫ2)) → H1(X,End(E)) is a bijection. An exact
analogue of the above argument, where we replace k[ǫ]/(ǫ2) by k〈V 〉 for a finite-
dimensional k-vector space V , gives a bijection DE(k〈V 〉) → H1(X,End(E)) ⊗ V .
If φ : V → W is a linear map, then the following square commutes.

DE(k〈V 〉) → H1(X,End(E)) ⊗ V
k〈φ〉 ↓ ↓ id⊗φ

DE(k〈W 〉) → H1(X,End(E)) ⊗ W

Hence DE satisfies (Hǫ), and its tangent space is H1(X,End(E)). If X is proper
over k, this is finite dimensional, so DE satisfies (H3) in that case.
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Theorem 3.6 Let X be a proper scheme over a field k. Let E be a coherent sheaf on
X. Then the deformation functor DE admits a hull, with tangent space Ext1(E,E).

Proof We will show that the conditions (H1), (H2), (H3) in the Schlessinger
Theorem 2.19 are satisfied by our functor DE.

Verification of (H1): An element of DE(A′) ×DE(A) DE(A′′) is an ordered tuple
(F ′, θ′,F ′′, θ′′) where (F ′, θ′) ∈ DE(A′) and (F ′′, θ′′) ∈ DE(A′′), such that there exists
an isomorphism η : F ′|A → F ′′|A which makes the following diagram commute:

F ′|X
i∗(η)
→ F ′′|X

θ′ ↓ ↓ θ′′

E = E

We fix one such η. Let F = F ′′|A, let u′′ : F ′′ → F be the quotient and let
u′ : F ′ → F be induced by η. Let B = A′ ×A A′′, and let G be the sheaf of
OXB

-modules defined by
G = F ′ ×u′,F ,u′′ F ′′

This is clearly coherent, as the construction can be done on each affine open and
glued. By Lemma 3.2 applied stalk-wise, the sheaf G is flat over B. By Lemma 3.3
applied stalk-wise, this is up to isomorphism the only coherent sheaf on XB, flat
over B, which comes with homomorphisms p′ : G → F ′ and p′′ : G → F ′′ which
make the following square commute:

G
p′′

→ F ′′

p′ ↓ ↓ u′′

F ′
u′

→ F

This shows that DE(B) → DE(A′) ×DE(A) DE(A′′) is surjective, as desired. Thus,
Schlessinger condition (H1) is satisfied.
Caution: If we choose another η, we might get a different G, and so the map
DE(B) → DE(A′) ×DE(A) DE(A′′) may not be injective.
Verification of (H2): If we take A to be k in the above verification of the condition
(H1), then η would be unique, and so we will get a bijection DE(A′ ×k A′′) →
DE(A′) ×DE(k) DE(A′′). In particular, this implies that (H2) is satisfied.
Verification of (H3): We have already seen in the special case when E is locally
free that the finite dimensional vector space H1(X,End(E)) = Ext1(E,E) is the
tangent space to DE. Now we give a proof that for a general coherent E, the tangent
space is Ext1(E,E). This proof is very different in spirit, and in particular it gives
another proof in the vector bundle case. For any finite dimensional vector space V
over k, we define a map

fV : V ⊗k Ext1(E,E) = Ext1(V ⊗k E,E) → DE(k〈V 〉)

as follows. An element of Ext1(V ⊗k E,E) is represented by a short exact sequence

S = (0 → V ⊗k E
i
→ F

j
→ E → 0) of OX-modules. We give F the structure of an
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OX[V ]-module (where X[V ] = X ⊗k k〈V 〉) by defining the scalar-multiplication map

V ⊗k F → F as the composite V ⊗k F
(idV ,j)
→ V ⊗k E

i
→ F . We denote the resulting

OX[V ]-module by FS. Note that the induced homomorphism V ⊗k(FS/V FS) → V FS

is an isomorphism, as it is just the identity map on V ⊗k E. Hence by Exercise
3.1.(vi), it follows that FS is flat over k〈V 〉. Hence we indeed get an element of
DE(k〈V 〉), which completes the definition of the map fV : V ⊗k Ext1(E,E) →
DE(k〈V 〉).
It can be seen from its definition that f is functorial in V , that is, if φ : V → W is
a linear map, then the following square commutes.

Ext1(E,E) ⊗ V → DE(k〈V 〉)
id⊗φ ↓ ↓ k〈φ〉

Ext1(E,E) ⊗ W → DE(k〈W 〉)

Next, we give an inverse gV : DE(k〈V 〉) → V ⊗k Ext1(E,E) to fV as follows.
Given any (F , θ) ∈ DE(k〈V 〉), let F = π∗(F) where π : X[V ] → X is the projection
induced by the ring homomorphism k →֒ k〈V 〉. Let j : F → E be the OX-linear map

which is obtained from the OX [V ]-linear map F → F|X
θ
→ E by forgetting scalar

multiplication by V . By flatness of F over k〈V 〉, the sequence 0 → V ⊗k〈V 〉 F →
F → F|X → 0 obtained by applying − ⊗k〈V 〉 F to 0 → V → k〈V 〉 → k → 0 is
again exact. As V ⊗k〈V 〉 F = V ⊗k (F/V F), by composing with θ (and its inverse)

this gives an exact sequence S = (0 → V ⊗k E
i
→ F

j
→ E → 0). We define

gV : DE(k〈V 〉) → V ⊗k Ext1(E,E) by putting gV (F , θ) = S.
Hence DE satisfies (Hǫ), and its tangent space is Ext1(E,E). If X is proper over
k, this is finite dimensional, so DE satisfies (H3) in that case. This completes the
proof of the Theorem 3.6 in the general case of coherent sheaves. �

Pro-Representability for a simple sheaf

Theorem 3.7 Let X be a proper scheme over a field k, and let F be a coherent
sheaf on X. Assume that there exists an exact sequence E1 → E0 → F → 0 of OX-
modules, where E1 and E0 are locally free (note that this condition is automatically
satisfied when F itself is locally free, or when X is projective over k). If the ring
homomorphism k → End(F ) (under which k acts on F by scalar multiplication) is
an isomorphism, then the deformation functor DF is pro-representable.

Proof Let A be artin local, and let I be a proper ideal. Let (F , θ) ∈ DF (A),
and let (F ′, θ′) denote its restriction to A/I. By Lemma 3.5, the natural ring
homomorphisms A → EndX⊗A/I(F) and A/I → EndX⊗A/I(F

′), under which A
and A/I act respectively on F and F ′ by scalar multiplication, are isomorphisms.
In particular, we get induced group isomorphisms A× → Aut(F) and (A/I)× →
Aut(F ′). The subgroups 1 + mA ⊂ A× and 1 + mA/I ⊂ (A/I)× therefore map
isomorphically onto Aut(F , θ) and Aut(F ′, θ′) respectively. As the homomorphism
1+mA → 1+mA/I is surjective, the restriction map Aut(F , θ) → Aut(F ′, θ′) is again
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surjective. From this, it follows that the Schlessinger condition (H4) is satisfied,
and so the functor DF is pro-representable by Theorem 2.19. �

Obstruction theory for deformations of a coherent sheaf

Theorem 3.8 Let X be a projective scheme over a field k, and let F be a coher-
ent sheaf on X. Then the deformation functor DF admits an obstruction theory
(Ext2(F, F ), (oe)). In particular when Ext2(F, F ) = 0 the functor DF is smooth,
that is, for any surjection B → A in Artk, the induced map DF (B) → DF (A) is
surjective.

Proof Let OX(1) be a chosen very ample line bundle on X. Then for for all n
sufficiently large, the higher cohomologies H i(X,F (n)) vanish, and by evaluating
global sections we get a surjection q0 : H0(X,F (n)) ⊗k OX(−n) → F . Choose a
large enough n, and let E be the corresponding vector bundle E = H0(X,F (n))⊗k

OX(−n). Let Q be the deformation functor of basic example 3, which keeps E fixed
and deforms the quotient q0. For A in Artk, given any element q : E ⊗k A → F
of Q(A), the sheaf F together with the unique isomorphism θ : F → F ⊗A k
which takes q0 to q ⊗A k defines an element (F , θ) of DF (A). This association is
functorial, and so we have a forgetful functor f : Q → DF . Let A be in Artk, and let
(F , θ) ∈ DF (A). The surjectivity of q0 : H0(X,F (n)) ⊗k OX(−n) → F implies the
surjectivity of the evaluation map p : H0(XA,F(n))⊗A OXA

(−n) → F . As F is flat
over A and as higher cohomologies of F (n) are zero, it follows that H0(XA,F(n))
is a free A-module, of the same rank as dimk H0(X,F (n)). Hence we can choose
an isomorphism φ : H0(X,F (n)) ⊗k A → H0(XA,F(n)) which restricts to identity
modulo mA. Consider the composite surjection q = p ◦ φ : E ⊗k A → F . Then
q ∈ Q(A) maps to (F , θ) ∈ DF (A) under the forgetful functor f : Q → DF . This
shows that the forgetful functor f : Q → DF is formally smooth. We have shown
later (Theorem 3.11) that Q has an obstruction theory taking values in Ext1X(G,F )
where G is the kernel of q : E → F . We have ExtiX(E,F ) = H i(X,Hom(E,F )) =
H i(X,F (n)) ⊗ H0(X,F (n))∗ = 0 for all i ≥ 1. Applying HomX(−, F ) to the
short-exact sequence 0 → G → E → F → 0 therefore gives an isomorphism ∂ :
Ext1X(G,F ) → Ext2X(F, F ). If e = (0 → I → B → A → 0) is a small extension in
Artk, we have an obstruction map oe : Q(A) → Ext1X(G,F ) ⊗ I.
Let q′ : EA → F be another homomorphism with q′|X = q0 = q|X . Then q′ is
necessarily surjective, and all such q′ form the fiber of Q(A) → DF (A) containing
q. Let G = ker(q) and G ′ = ker(q′). These are flat over A, with G|X = G = G ′X .
The corresponding obstruction classes ωA and ω′A for lifting these to Q(B) (see the
proof of Theorem 3.11) respectively lie in the vector spaces Ext1XA

(I ⊗k F,G) and
Ext1XA

(I⊗kF,G ′). But under the isomorphisms of these spaces with Ext1X(G,F )⊗I,
it follows from q′|X = q0 = q|X and G|X = G = G ′X that ωA and ω′A map to
the same element of Ext1X(G,F ) ⊗ I, that is, oe(q) = oe(q

′) ∈ Ext1X(G,F ) ⊗ I.
Therefore oe is constant on fibers of Q(A) → DF (A), so we get a unique map
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o′e : DF (A) → Ext2X(F, F ) ⊗ I such that the following diagram commutes:

Q(B) → Q(A)
oe→ Ext1X(G,F ) ⊗ I

fB ↓ fA ↓ ↓ ∂⊗idI

DF (B) → DF (A)
o′e→ Ext2X(F, F ) ⊗ I

From the commutativity of the above diagram, the surjectivity of the first two ver-
tical maps and the fact that the last vertical map is an isomorphism, it follows that
the lower row is exact. We leave the verification of the functoriality condition on o′e
(using the functoriality of oe) as an exercise to the reader. Thus, (Ext2X(F, F ), (o′e))
is an obstruction theory for DF . �

Example 3.9 Consider the projective line P1 over k with standard open cover
U0 = Spec k[z] and U∞ = Spec k[z−1]. Let E = O(−1) ⊕ O(1). Then the tan-
gent space Ext1(E,E) to DE is 1-dimensional, and DE is formally smooth as
Ext2(E,E) = 0. Hence E admits a hull parametrised by the formal power series
ring k[[t]]. The transition function

g0,∞(t) =

(
z−1 t

0 z

)

over the open cover of P1 × A1 given by U0 × A1 and U∞ × A1 defines a vector
bundle E(t) on P1×A1. As g0,∞(0) = diag(z−1, z), this comes with an isomorphism
θ : E(t)|P1 → E. (This is actually the universal family of extensions of O(1) by
O(−1).) Going modulo (t2), the restriction (E(ǫ), θ) gives a universal first order
family for DE parametrised by k[ǫ]/(ǫ2). Hence by inverse function theorem for k[[t]],
the pro-family (E(t), θ) (obtained by restrictions to each k[t]/(tn)) is miniversal. The
pro-family (E(t + t2), θ) defined by transition matrix g(t + t2) is isomorphic to the
original family, as g(t + t2) = h(t)g(t)h(t)−1 where h(t) = diag(1 + t, 1) is invertible
over k[[t]], with h(0) = I. Hence the non-trivial automorphism k[[t]] → k[[t]] defined
t 7→ t + t2 pulls back the miniversal family to another such. Hence the family is not
universal. Hence the condition of simplicity in Theorem 3.7 is not superfluous.
Finally, for the moduli functor ME, the set ME(k[ǫ]/(ǫ2)) has exactly two elements,
namely [E(ǫ)] and [E(0)]. This cannot be a vector space when k is larger than Z/(2).
In particular the functor ME does not have the good properties of DE.

Homological preliminaries for the Quot functor
Consider a short-exact sequence s = (0 → M ′ → M → M ′′ → 0) in an abelian
category, together with monomorphisms u′ : N ′ → M ′ and u′′ : N ′′ → M ′′. An
exact filler for (s, u′, u′′) will mean a monomorphism u : N →֒ M such that we
have morphisms N ′ → N and N → N ′′ (necessarily unique) which give the following
commutative diagram with short-exact rows.

0 → N ′ → N → N ′′ → 0
↓ ↓ ↓

0 → M ′ → M → M ′′ → 0
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Lemma 3.10 Let C be an abelian category and let s = (0 → M ′ i
→ M

j
→ M ′′ → 0)

be a short exact sequence in C. Let u′ : N ′ →֒ M ′ and u′′ : N ′′ →֒ M ′′ be given
sub-objects. Then the following holds.
(1) Under the natural map Ext1C(M

′′,M ′) → Ext1C(N
′′,M ′/N ′), the image of the

class s is the class ω of the induced short exact sequence

ω = (0 → M ′/N ′ → j−1N ′′/N ′ → N ′′ → 0).

There exists an exact filler for (s, u′, u′′) if and only if ω = 0.
(2) The set S of all isomorphism classes of exact fillers for the above diagram is
in a natural bijection ϕ (described within the proof) with the set L of all lifts h :
N ′′ → M/N ′ of N ′′ →֒ M ′′. The set L admits a natural action of the abelian group
HomC(N

′′,M ′/N ′), under which an element α ∈ HomC(N
′′,M ′/N ′) acts by h 7→

h+α. This action makes L (and hence also S via ϕ) a principal HomC(N
′′,M ′/N ′)-

set (which by (1) is non-empty if and only if ω = 0).
(3)(Equivariance) With notation as before, suppose we have a commutative square

N ′ → L′

u′ ↓ ↓ v′

M ′ → K ′

where v′ : L′ → K ′ is monic. Let f : HomC(N
′′,M ′/N ′) → HomC(N

′′, K ′/L′)
denote the homomorphism induced by the above commutative square. Let K =
K ′

∐
M ′ M be the push-out, so that we have the following commutative diagram with

short-exact rows.
0 → M ′ → M → M ′′ → 0

↓ ↓ ||
0 → K ′ → K → M ′′ → 0

Let s′ denote the bottom row of the above diagram, and let S′ be the set of iso-
morphism classes of exact fillers for (s′, v′, u′′) which by (2) is in natural bijection
with the set L′ of section over N ′′ of K/L′ → M ′′. Given any h : N ′′ → M/N ′ in
L, we get an element h′ : N ′′ → K/L′ in L′ by composing with the homomorphism
M/N ′ → K/L′. This defines a natural map S → S′, which is equivariant under the
homomorphism f : HomC(N

′′,M ′/N ′) → HomC(N
′′, K ′/L′).

Proof Let j−1N ′′ ⊂ M denote the pull-back of N ′′ ⊂ M ′′ under j : M → M ′′. By
definition, the image ω of e in Ext1C(N

′′,M ′/N ′) is the extension class of the short
exact sequence 0 → M ′/N ′ → j−1N ′′/N ′ → N ′′ → 0. Therefore ω = 0 if and only if
there exists a ‘lift’ h : N ′′ →֒ M/N ′ with j ◦ h = u′′ : N ′′ →֒ M ′′ where j is induced
by j.
An exact filler u : N →֒ M induces a sub-object u : N/N ′ →֒ M/N ′. As we have an
isomorphism N/N ′ → N ′′, this gives a lift h : N ′′ → M/N ′ of u′′ : N ′′ →֒ M ′′. We
define ϕ : S → L by u 7→ h. Conversely, the pull-back of the sub-object (N ′′, h) of
M/N ′ under the quotient morphism M → M/N ′ is a sub-object (N, u) of M , which
defines an inverse for ϕ, showing it is a bijection.
It is clear that L is a principal HomC(N

′′,M ′/N ′)-set under the given action. The
rest of the lemma is now a simple exercise. �
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Pro-representability and tangent space for the Quot functor
Let X be a proper scheme over k. Let E be a coherent OX-module over X, and let
q0 : E → F0 be a coherent quotient OX-module. Let Q be the deformation functor
for the above quotient, which was introduced as our basic example 3.
The following result is essentially due to Grothendieck, though re-cast in the lan-
guage of Schlessinger.

Theorem 3.11 Let k be any field, X proper over k, and let q0 : E → F0 be a surjec-
tive morphism of coherent OX-modules. Let Q denote the corresponding deformation
functor. Then we have the following.
(1) The functor Q is pro-representable.
(2) It has tangent space TQ = HomX(G0, F0) where G0 = ker(q0).
(3) There exists a deformation theory for Q taking values in Ext1X(G0, F0). In
particular if Ext1X(G0, F0) = 0, then the functor Q is formally smooth.

We begin with the proof of pro-representability.
If X → Spec k is projective, then as proved by Grothendieck (see for example [Ni]),
there exists a scheme QuotE/X (the quot scheme) of locally finite type over k,
whose S-valued points for any k-scheme S are equivalence classes of S-flat families
of coherent quotients of E over X ×k S. The given quotient E → F0 defines a k-
rational point q0 ∈ QuotE/X . Hence the functor Q is just the functor of deformations
of the point q0 in QuotE/X , so this is a case of basic example 1, hence is representable
(which is more than being pro-representable).
The general case, where the proper morphism X → Spec k need not be projective, is
treated via Schlessinger’s theorem for pro-representability, which has the following
obvious corollary.

Theorem 3.12 A deformation functor ϕ is pro-representable if and only if the fol-
lowing two conditions are satisfied.
(1) For any morphisms A′ → A and A′′ → A in Artk such that A′′ → A is surjective,
the induced map ϕ(A′ ×A A′′) → ϕ(A′) ×ϕ(A) ϕ(A′′) is a bijection of sets.
(2) The tangent vector space Tϕ = ϕ(k[ǫ]/(ǫ)2) is finite dimensional (this is indeed
a vector space when (1) is satisfied).

We now show that the condition (1) in the Theorem 3.12 is satisfied by our functor
Q. An element of Q(A′)×Q(A) Q(A′′) has the form (q′, q′′), where q′ : EA′ → F ′ and
q′′ : EA′′ → F ′′ are coherent quotients over XA′ and XA′′ respectively, with F ′ flat
over A′ and F ′′ flat over A′′, such that there exists an isomorphism η : F ′|A → F ′′|A
such that the following diagram commutes:

EA = EA

q′|A ↓ ↓ q′′|A

F ′|A
η
→ F ′′|A

Note that if a η exists as above, it is necessarily unique by surjectivity of the vertical
maps.
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Note The above uniqueness of η is the reason why the functor Q is pro-representable,
in contrast with the functor of deformations of a coherent sheaf, where we only had
a hull. Recall that the corresponding isomorphism η was not unique in the case of
the functor of deformations of a coherent sheaf.

Let F = F ′′|A, let u′′ : F ′′ → F be the quotient and let u′ : F ′ → F be induced by
η. Let B = A′ ×A A′′, and let G be the sheaf of OXB

-modules defined by

G = F ′ ×u′,F ,u′′ F ′′

This is clearly coherent, as the construction can be done on each affine open and
glued. By Lemma 3.2 applied stalk-wise, the sheaf G is flat over B. By Lemma 3.3
applied stalk-wise, this is up to isomorphism the only coherent sheaf on XB, flat
over B, which comes with homomorphisms p′ : G → F ′ and p′′ : G → F ′′ which
make the following square commute:

G
p′′
→ F ′′

p′ ↓ ↓ u′′

F ′
u′

→ F

Next, let p : EB → G be the OXB
-linear homomorphism induced by (q′, q′′). This

is clearly surjective, and is the only OXB
-linear homomorphism which restricts to q′

and q′′ over A′ and A′′. This shows that Q(B) → Q(A′)×Q(A) Q(A′′) is bijective, as
desired.
Therefore, to complete the proof of pro-representability, it only remains to verify
the condition (2) of Theorem 3.12. This we do next, when we determine the space
TQ.

Remark 3.13 Let B → A be surjection of rings with kernel I, such that I2 = 0, so
that I is naturally an A-module. Then the natural map I ⊗B M → I ⊗A (M/IM) :∑

bi ⊗B xi 7→
∑

bi ⊗A xi is an isomorphism of B-modules for any B-module M .

Lemma 3.14 Let B → A be surjection of rings with kernel I, such that I2 = 0. Let
M be a flat B-module (not necessarily finitely generated). Let u′′ : G →֒ A⊗B M =
M/IM be an A-submodule, such that the quotient F = (A ⊗B M)/G is a flat A-
module. In particular, the induced map u′ : I ⊗A G → I ⊗A (A ⊗B M) = I ⊗B M
is monic, where the last equality is by Remark 3.13. As M is B-flat, the sequence
s = (0 → I ⊗B M → M → A ⊗B M → 0) is exact. For any exact filler u : N →֒ M
of (s, u′, u′′), consider the resulting commutative diagram of B-modules

0 → I ⊗A G → N → G → 0
u′ ↓ u ↓ u′′ ↓

0 → I ⊗B M → M → A ⊗B M → 0

where the rows are exact. Then we have the following:
(1) The submodule I ⊗A G ⊂ N from the top row is the submodule IN ⊂ N .
Consequently, the quotient map N → G induces an isomorphism A ⊗B N → G.
(2) The quotient module M/N is flat over B.
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Proof (1) As I annihilates G, from the surjection N → G it follows that IN ⊂
ker(N → G) = I ⊗A G. For the reverse inclusion, consider an element b ⊗A g of
I ⊗A G. Under the inclusion G ⊂ A⊗B M , it follows that g can be written as 1⊗B x
for some x ∈ M . Then b ⊗A g maps to the element b ⊗A (1 ⊗B x) = bx ∈ M under
the composite I ⊗A G →֒ I ⊗B M →֒ M . As N → G is surjective, there exists some
element y ∈ N ⊂ M which maps to g ∈ G, that is, 1 ⊗B y = g ∈ A ⊗B M . This
means 1⊗B x = g = 1⊗B y, so 1⊗B (x−y) = 0 ∈ A⊗B M , which means x−y ∈ IM .
As by assumption I2 = 0, it follows that bx = by. This shows bx ∈ IN , proving the
desired inclusion I ⊗A G ⊂ IN .
(2) As N → G is the quotient N → N/IN , it follows that M/N → F is the quotient
(M/N)/I(M/N). In other words, applying A ⊗B − to 0 → N → M → M/N → 0
produces the exact sequence 0 → G → M/IM → F → 0 of A-modules. As M is flat
over B so TorB

1 (A,M) = 0, the above exact sequence shows that TorB
1 (A,M/N) =

0. Moreover, by assumption A ⊗B (M/N) = F is flat over A. Hence by Exercise
3.1.(vi), it follows that M/N is B-flat as desired. �

Let B → A be a small extension in Artk with kernel I, let q : EA → F be in Q(A),
and let G →֒ EA be the kernel of q : EA → F . Note that I ⊗A G = I ⊗k G0 as
mBI = 0. Hence the above lemma has the following immediate corollary.

Lemma 3.15 If B → A is a small extension in Artk with kernel I, then the fiber
of Q(B) → Q(A) over (q : EA → F) ∈ Q(A) is in a natural bijection with the set of
all exact fillers of the diagram

I ⊗k G0 G
↓ ↓

0 → I ⊗k E → B ⊗k E → A ⊗k E → 0

To determine the tangent space TQ, we apply the above description of the fibers of
Q(B) → Q(A) in the case where A = k and B = k〈V 〉 for any finite dimensional
k-vector space V . As Q(k) is a singleton set, this shows that Q(k〈V 〉) is in a natural
bijection with the set SV of all exact fillers of the diagram

V ⊗k G0 G0

↓ ↓
0 → V ⊗k E → k〈V 〉 ⊗k E → E → 0

The set SV has a natural base-point ∗V , given by the filler k〈V 〉⊗kG0 →֒ k〈V 〉⊗kE.
By Lemma 3.10, the set SV is naturally a principal set under HomX(G0, V ⊗k

F0). Therefore the base point gives a bijection HomX(G0, V ⊗k F0) → SV . Given
any linear map V → W of finite dimensional k-vector spaces, by Lemma 3.10,
we get an induces map SV → SW , which is equivariant under the induces group
homomorphism HomX(G0, V ⊗k F0) → HomX(G0, W ⊗k F0). Also, it maps the
base point ∗V to the base point ∗W . Hence the bijection HomX(G0, V ⊗kF0) → SV is
functorial on the category of finite dimensional k-vector spaces. Composing with the
natural bijection SV → Q(k〈V 〉), we get a natural bijection HomX(G0, V ⊗k F0) →
Q(k〈V 〉) in the category of finite dimensional k-vector spaces.
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This shows that the tangent space to Q is HomX(G0, F0), proving Theorem 3.11.(2).
As X is proper over k, the vector space HomX(G0, F0) is finite dimensional, which
completes the proof of Theorem 3.11.(1) via the Schlessinger criterion (H3).

Obstruction theory for Q
We now prove Theorem 3.11.(3). Given a small extension e = (0 → I → B → A →
0), we define a map oe : Q(A) → Ext1X(G0, F0)⊗k I as follows. By Lemma 3.15, the
fiber of Q(B) → Q(A) over an element (EA → F) is the set of exact fillers of the
diagram

I ⊗A G G
↓ ↓

0 → I ⊗A EA → EB → EA → 0

where G = ker(EA → F). Let s ∈ Ext1XB
(EA, I ⊗A EA) be the extension class of

0 → I ⊗A EA
i
→ EB

j
→ EA → 0. By Lemma 3.10(1), an exact filler exists for the

above diagram if and only if its image ω = 0, where ω ∈ Ext1XB
(G, I ⊗A F) is the

extension class of

0 →
I ⊗A EA

I ⊗A G
→

j−1(G)

i(I ⊗A G)
→ G → 0

As (I ⊗A EA)/(I ⊗A G) = I ⊗A F = I ⊗k F0, we regard ω as an element of
Ext1XB

(G, I ⊗k F0). As the module j−1(G)/i(I ⊗A G) is annihilated by I, the above
short exact sequence is a sequence of OXA

-modules, hence ω corresponds to an
element

ωA ∈ Ext1XA
(G, I ⊗k F0).

As XA is projective over A, the module G admits a locally free resolution . . . →
L1 → L0 → G → 0. As G is flat over A, the above restricted to X gives a resolution
. . . → L1 → L0 → G0 → 0. The functor Ext can be calculated by using a locally
free resolution (see for example Hartshorne [H] Chapter III Proposition 6.5). We
therefore have

Ext1XA
(G, I ⊗k F0) = h1(HomOXA

(L•, I ⊗k F0)) by [H] Chapter III Prop. 6.5

= h1(HomOX
(L•, I ⊗k F0)) as I ⊗k F0 is annihilated by mA

= I ⊗k h1(HomOX
(L•, F0))

= I ⊗k Ext1X(G0, F0) again by [H] Chapter III Prop. 6.5.

Hence the element ω associated to a given element of Q(A) and a small exten-
sion e defines an element ωk ∈ I ⊗k Ext1X(G0, F0) We now define oe : Q(A) →
Ext1X(G0, F0)⊗ I by sending q 7→ ωA. By its definition, this gives an exact sequence
Q(B) → Q(A)

oe→ Ext1X(G0, F0) ⊗ I. The reader may verify from its definition that
oe is functorial in e.
This completes the proof of the theorem. �

Deformations of a variety
Though our focus in these notes has been on vector bundles, historically the main
source of motivation and ideas in deformation theory has been the study of defor-
mations a variety. We have room here only to mention some basic facts.
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Given a smooth variety X over a field k, consider the deformation functor DefX

of our basic example 4. Then DefX admits a hull, with tangent space H1(X,TX),
where TX is the tangent bundle of X. In particular if X is affine then all its
infinitesimal deformations are trivial. When C is a smooth projective curve of genus
g ≥ 2, the tangent space is of dimension 3g − 3. This is the so called ‘Riemann’s
count’, which is the historical beginning of deformation theory. When X is smooth,
the functor DefX admits an obstruction theory taking values in H2(X,TX). For
more on this subject, the reader can see the book by Sernesi [Se] and the notes by
Vistoli [V].

Some suggestions for further reading
The above brief notes give just the beginning of the algebraic approach to deforma-
tion theory. For a graduate student wishing to study further, the next basic topic
I would like to suggest is the use of the Grothendieck existence theorem to convert
pro-families into ‘actual’ families. For this and further theoretical development of
algebraic deformation theory (including the cotangent complex) with some of its im-
portant applications, a good introductory source is the lecture notes of Luc Illusie
[I]. To see some examples of the application of basic deformation theory to vector
bundles and moduli, the reader can consult the textbook of Huybrechts and Lehn
[L-H].

Finally, I take this opportunity to express my gratitude to Peter Newstead. His
lecture notes [Ne] and other writings have helped me (and in fact an entire generation
of algebraic geometers) learn the foundations of vector bundles and moduli theory.
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