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What is spectral theory?

Spectral theory is the general theory of the relation of the
fundamental parameters of an object and its �spectral�
characteristics.

Spectral characteristics means eigenvalues or scattering
data or, more generally, spectral measures
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What is spectral theory

Examples include

Can you hear the shape of a drum ?

Computer tomography

Isospectral manifold for the harmonic oscillator
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What is spectral theory

The direct problem goes from the object to spectra.

The inverse problem goes backwards.

The direct problem is typically easy while the inverse
problem is typically hard.

For example, the domain of de�nition of the harmonic
oscillator isospectral �manifold� is unknown. It is not even
known if it is connected!
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OPs

Orthogonal polynomials on the real line (OPRL) and on the
unit circle (OPUC) are particularly useful because the
inverse problems are easy�indeed the inverse problem is the
OP de�nition as we'll see.

OPs also enter in many application�both speci�c
polynomials and the general theory.
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OPs

Indeed, my own interest came from studying discrete
Schrödinger operators on `2(Z)(

Hu
)
n

= un+1 + un−1 + V un

and the realization that when restricted to Z+, one had a
special case of OPRL.
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OPRL basics

µ will be a probability measure on R. We'll always suppose
that µ has bounded support [a, b] which is not a �nite set of
points. (We then say that µ is non-trivial.) This implies
that 1, x, x2, . . . are independent since∫
|P (x)|2 dµ = 0⇒ µ is supported on the zeroes of P .

Apply Gram Schmidt to 1, x, . . . and get monic polynomials

Pj(x) = xj + αj,1x
j−1 + . . .

and orthonormal (ON) polynomials

pj = Pj/‖Pj‖
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OPRL basics

More generally we can do the same for any probability
measure of bounded support on C.
One di�erence from the case of R, the linear combination of
{xj}∞j=0 are dense in L2(R, dµ) by Weierstrass. This may or
may not be true if supp(dµ) 6⊂ R.
If dµ = dθ/2π on ∂D, the span of {zj}∞j=0 is not dense in

L2 (but is only H2). Perhaps, surprisingly, we'll see later
that there are measures dµ on ∂D for which they are dense
(e.g., µ purely singular).

More signi�cantly, the argument we'll give for our recursion
relation fails if supp(dµ) 6⊂ R.
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OPRL basics

Since Pk is monic and {Pj}k+1
j=0 span polynomials of degree

at most k + 1, we have

xPk = Pk+1 +

k∑
j=0

Bk,j Pj

Clearly
Bk,j = 〈Pj , xPk〉/‖Pj‖2

Now we use
〈Pj , xPk〉 = 〈xPj , Pk〉

(need dµ on R!!)
If j < k − 1, this is zero.

If j = k − 1, 〈Pk−1, xPk〉 = 〈xPk−1, Pk〉 = ‖Pk‖2.
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OPRL basics

Thus (P−1 ≡ 0); {aj}∞j=1, {bj}∞j=1 : Jacobi recursion

xPN = PN+1 + bN+1PN + a2
NPN−1

bN ∈ R, aN = ‖PN‖/‖PN−1‖

These are called Jacobi parameters. This implies

‖PN‖ = aN aN−1 . . . a1 (since ‖P0‖ = 1).

This, in turn, implies pn = Pn/a1 . . . an obeys

xpn = an+1pn+1 + bn+1pn + anpn−1
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OPRL basics

We have thus solved the inverse problem, i.e., µ is the
spectral data and {an, bn}∞n=1 are the descriptors of the
object.

In the orthonormal basis {pn}∞n=0, multiplication by x has
the matrix

J =


b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
...

...
...

...
. . .


called a Jacobi matrix.
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Favard's Theorem

Since

bn =

∫
xp2

n−1(x) dµ, an =

∫
xpn−1(x)pn(x) dµ

supp(µ) ⊂ [−R,R]⇒ |bn| ≤ R, |an| ≤ R.
Conversely, if supn

(
|an|+ |bn|

)
= α <∞, J is a bounded

matrix of norm at most 3α. In that case, the spectral
theorem implies there is a measure dµ so that

〈(1, 0, . . .)t, J `(1, 0, . . .)t〉 =

∫
x`dµ(x)

If one uses Gram-Schmidt to orthonormalize
{J `(1, 0, . . .)t}∞`=0, one �nds µ has Jacobi matrix exactly
given by J .
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Favard's Theorem

We have thus proven Favard's Theorem (his paper was in
1935; really due to Stieltjes in 1894 or to Stone in 1932).

Favard's Theorem.There is a one�one correspondence

between bounded Jacobi parameters

{an, bn}∞n=1 ∈
[
(0,∞)× R

]∞
and non-trivial probability measures, µ, of bounded support

via:
µ⇒ {an, bn} (OP recursion)

{an, bn} ⇒ µ (Spectral Theorem)

There are also results for µ's with unbounded support so
long as

∫
xn dµ <∞. In this case, {an, bn} ⇒ µ may not

be unique because J may not be essentially self-adjoint on
vectors of �nite support.
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OPUC basics

Let dµ be a non-trivial probability measure on ∂D. As in
the OPRL case, we use Gram-Schmidt to de�ne monic OPs,
Φn(t) and ON OP's ϕn(z).

In the OPRL case, if z is multiplication by the underlying
variable, z∗ = z. This is replaced by z∗z = 1.

In the OPRL case, Pn+1 − xPn ⊥ {1, x1, . . . , xn−2}.
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OPUC basics

In the OPUC case, Φn+1 − zΦn ⊥ {z, . . . , zn}, since

〈zΦ, zj〉 = 〈Φ, zj−1〉

if j ≥ 1.

In the OPRL case, we used deg P = n and
P ⊥ {1, x, . . . , xn−2} ⇒ P = c1Pn + c2Pn−1.

In the OPUC case, we want to characterize deg P = n,
P ⊥ {z, z2, . . . , zn}.
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OPUC basics

De�ne ∗ on degree n polynomials to themselves by

Q∗(z) = znQ

(
1

z̄

)
(bad but standard notation!) or

Q(z) =
n∑
j=0

cjz
j ⇒ Q∗(z) =

n∑
j=0

cn−j z
j

Then, ∗ is unitary and so for deg Q = n

Q ⊥ {1, . . . , zn−1} ⇔ Q = cΦn

is equivalent to

Q ⊥ {z, . . . , zn} ⇔ Q = cΦ∗n
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Szeg® recursion and Verblunsky

coe�cients

Thus, we see, there are parameters {αn}∞n=0 (called
Verblunsky coe�cients) so that

Φn+1(z) = zΦn − αnΦ∗n(z)

This is the Szeg® Recursion (History: Szeg® and Geronimus
in 1939; Verblunsky in 1935�36)

Applying ∗ for deg n+ 1 polynomials to this yields

Φ∗n+1(z) = Φ∗n(z)− αnzΦn

The strange looking −ᾱn rather than say +αn is to have
the αn be the Schur parameter of the Schur function of µ
(Geronimus); also the Verblunsky parameterization then
agrees with αn. These are discussed in [OPUC1].
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Szeg® recursion and Verblunsky

coe�cients

Φn monic ⇒ constant term in Φ∗n is 1 ⇒ Φ∗n(0) = 1.

This plus Φn+1 = zΦn − ᾱnΦ∗n(z) implies

−Φn+1(0) = αn

i.e., Φn determines αn−1.
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Szeg® recursion and Verblunsky

coe�cients

For OPRL, we saw ‖Pn+1‖/‖Pn‖ = an+1. We are looking
for the analog for OPUC.

Szeg® Recursion ⇒ Φn+1 + ᾱnΦ∗n = zΦn

Φn+1 ⊥ Φ∗n ⇒ ‖Φn+1‖2 + |αn|2 ‖Φ∗n‖2 = ‖zΦn‖2

Multiplication by z unitary plus ∗ antiunitary ⇒

‖Φn+1‖2 = ρ2
n ‖Φn‖2; ρ2

n = 1− |αn|2

which implies |αn| < 1 (i.e., αn ∈ D) and

‖Φn‖ = ρn−1 · · · ρ0
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Szeg® recursion and Verblunsky

coe�cients

(
ϕn+1

ϕ∗n+1

)
= An(z)

(
ϕn
ϕ∗n

)
x; An = ρ−1

n

(
z −ᾱn

−αn z 1

)

detAn 6= 0 if z 6= 0, so we can get ϕn (Φn) from ϕn+1

(Φn+1) by

zΦn = ρ−2
n

[
Φn+1 + ᾱnΦ∗n+1

]
Φ∗n = ρ−2

n

[
Φn+1 + αnΦn+1

]
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Szeg® recursion and Verblunsky

coe�cients

We see that Φn+1 determines αn, so by induction and
inverse recursion,

Theorem. If two measures have the same Φn, they have

the same {Φj}nj=0 and {αj}n−1
j=0 .
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Szeg® recursion and Verblunsky

coe�cients

A similar argument to the one that led to |αn| < 1 yields

Theorem. All zeros of Φn lie in D.

Proof. Φn(z0) = 0⇒ Φn = (z − z0)p, deg p = n− 1

zp = Φn + z0p and p ⊥ Φn ⇒ ‖p‖2 = ‖Φn‖2 + |z0|2‖p‖2

⇒ |z0| < 1

Corollary. All zeros of Φ∗n(z) lie in C \ D.
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Szeg® recursion and Verblunsky

coe�cients

Here is a second proof that only uses Szeg® recursion. By
induction, suppose that all zeros of Φn are in D. Then, for
|β| < 1

zΦn + βΦ∗n 6= 0 on ∂D

since |zΦn(z)| = |Φ∗n(z)| on ∂D. (1
z̄ = z)

If Φ
(β)
n+1 = zΦn + βΦ∗n, then at β = 0, all zeros of Φ

(β)
n+1 are

in D.

As β varies in D, all zeros of Φ
(β)
n+1 are trapped in D. QED.
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Bernstein�Szeg® Approximation

We are heading towards a proof tht any {αn}∞n=0 ⊂ D are
the Verblunsky coe�cients of a measure on ∂D (analog of
Favard's Theorem). It will depend on

Theorem (Bernstein�Szeg® measures). Let

{α(0)
j }

n−1
j=0 ∈ Dn. Let ϕn(z) be the normalized degree n

polynomial obtained by Szeg® recursion. Let

dµn(θ) =
dθ

2π|ϕn(z)|2

Then dµn has Verblunsky coe�cients

αj(dµn) =

{
α

(0)
j j = 0, . . . , n− 1

0 j ≥ n
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Bernstein�Szeg® Approximation

The �rst step of the proof is to show that

k, `, n with k < n+ `⇒
∫
z=eiθ

z̄k z` ϕn(z)dµn(θ) = 0

For z ∈ ∂D⇒ ϕn(z) = ϕn
(

1
z̄

)
= z−nϕ∗n(z).

Thus the integral above is∮
z̄k z` ϕn(z)

z−n ϕn(z)ϕ∗n(z)

dz

2πiz
=

1

2π

∮
z`+n−k−1 dz

ϕ∗n(z)

is zero since
[
ϕ∗n(z)

]−1
is analytic on a neighborhood of D

and `+ n− k − 1 ≥ 0.
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Bernstein�Szeg® Approximation

Thus, z`ϕn is a multiple of the OP's for dµn.

Since
∫
|z` ϕn|2 dµ = 1, we see that

ϕn+k(z; dµ) = zk ϕn(z); k > 0.

As we saw, Φn determines {αj}n−1
j=0 and Φj by inverse

Szeg® recursion and −Φj+1(0) = αj . This shows that

ϕj(z; dµ) =

{
ϕj(x) j = 0, . . . , n

zj−n ϕn(z) j = n, n+ 1, . . .

implying the claimed result.
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Bernstein�Szeg® Approximation

Given {αj}∞j=0 ⊂ D∞, we can form dµn as above via∫
Φj(e

iθ)dµ(eiθ) = 0, {Φj}nj=0 determines {
∫
zjdµ}nj=0

inductively (actually they determine more moments). Thus∫
zjdµn =

∫
zjdµm j ≤ min(n,m)

and
∫
zj dµn =

(∫
zj dµn

)
.

Thus, dµn has a weak limit dµ∞. Clearly, αj(dµ∞) = αj .

We have thus proven

Verblunsky's Theorem. µ→ {αj(µ)}∞j=0 sets up a 1�1
correspondence between non-trivial probability measures on
∂D and D∞.
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Carmona Simon Formula

Simon [CRM Proc. and Lecture Notes 42 (2007), 453�463]
has proven an analog of the Bernstein�Szeg® approximation
for OPRL (the analog for Schrödinger operators is due to
Carmona; hence the name):

Let dρ be a probability measure on R with
∫
|x|n dρ <∞

for all n. Let {pn}∞n=0 be its orthonormal polynomials and
{an, bn}∞n=1 its Jacobi parameters. Let

dνn(x) = dx/
[
π(a2

np
2
n(x) + p2

n−1(x))
]

Then, for ` = 0, . . . , 2n− 2,
∫
x` dνn =

∫
x` dρ.

If the moment problem for dρ is determinate, then
dνn → dρ weakly.
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Carmona Simon Formula

One important consequence of this result is

Theorem. If I ⊂ R is an interval and for all x ∈ I and
some c > 0, we have that

c ≤ a2
np

2
n(x) + p2

n−1(x) ≤ c−1

then dρ � I has a.c. part and no singular spectrum.

Similarly, for I ⊂ ∂D and µ a probability measure

c ≤ |ϕn(z)| ≤ c−1 all z ∈ I

implies dµ � I has a.c. part and no singular spectrum.

Remark. A much stronger result is known (see e.g., Simon
[Proc AMS 124 (1996), 3361]); I can be any set and c can
be x-dependent.
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