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Szegd's Theorem as a Variational
Principle

Variational Szeg6's Theorem was proven by him in 1914 as a statement
inciple about Toeplitz Determinants as we discuss below.

In 1920-21, he rephrased it as a variational principle in
OPUC. This (two-part) paper essentially invented the
general theory of OPUC.

In these papers, Szeg6 assumed dy was purely a.c. The
addition of a singular continuous part is a discovery of
Verblunsky in 1934-35 but his work was largely ignored and
he didn’t get credit until about fifteen years ago when, in a
different context, Killip and Simon rediscovered his proof
and then his paper.



Szegd's Theorem as a Variational
Principle

Variational ®,, has a variational form. Since ®,, = Proj of 2" onto the
Principle orthogonal complement of {1,...,2""1},

|®,,|| = dist of 2™ to span of {1,...,2""'}
= min{||P|| | P monic ,deg P = n}

— min{|P*]| | P(0) = 1,deg P = n}
since P monic < P*(0) = 1.

This implies ||®y,4+1| < ||®,|| which is obvious from
[®nll = pop1-..pn—1 and p; < 1.



Szegd's Theorem as a Variational

Principle

Thus, clearly, lim;, o ||®,,|| exists and

Variational lim ||@n|| — 1nf{||P|| | P(O) = ]_,P Is a pOlynomial }
n—oo

Principle

Szeg6 Theorem for OPUC. Let

de
dp = f(0) — + dus
p=fO) 5 +dp
be an arbitrary probability measure. Then

inf{||P||* | P(0) =1, P is a polynomial }

o f s 02)



Variational
Principle

Szegd's Theorem as a Variational
Principle

This innocuous-looking theorem will have remarkable
consequences as we'll see, in part because it has multiple
equivalent forms.

Because ff(@)% < 00, the integral cannot diverge to
+00, but it can to —oo in which case, we interpret
exp(* * x) as 0. Indeed, by Jensen's inequality and the
concavity of log, the integral is non-positive and the
exponential in [0, 1] as it must be given that ||®g| = 1.

One remarkable aspect of this theorem is that du, doesn’t
enter!

Before turning to the proof, we consider some equivalent
forms and consequences.




Szegd’s Theorem as a Sum Rule

As we've seen, ||D,|| = p1...pn_1 SO

oo

lim|[®, > = ] (1 - loy?)

=0

Szeg6é Theorem (Sum Rule Version). If
dp = f(0)L + dps, then

Zlog 1 — |a]| /10g( (9))%

This is a precursor of KdV sum rules. It is clearly equivalent
to the variational form.



Szegd’s Theorem as a Sum Rule

Corollary. Y% |a;|* < 0o & [log(f(8)) 42 > —oc.

A consequence of this is that djus can be more or less
arbitrary while one still has Z;’iolajP < oo; for example, if
[dus=n<1, (1-n)% + du, = du has

(e e]
2 j—olaj(p)] < oc.
This is remarkable because we'll see in a future lecture that
> iolajl < oo = dpuis purely a.c. and e < |f(9)] < gt
for some ¢ > 0 and all 6.

It is also remarkable because it is not easy to construct
operators with mixed spectrum and potential decay.



Szegd’'s Theorem and Toeplitz

Determinant Asymptotics

Given {c, }52 _ ., the corresponding N x N Toeplitz matrix
Tn(c) has the form

Toeoli o C1 CN-1
oeplitz
Determinant C_1 () e CN
Asymptotics

C_N+1 C—_N4+2 ... (&)

ie., (TN(C))ij = ¢j_;. If pis a measure, we set
cj = [ e 0du(0) and write (u is called the symbol)

Dy (p) = det (TN ()



Szegd’'s Theorem and Toeplitz
Determinant Asymptotics

Notice that in the L2(du) inner product,

k0 _ij0 k _j
Toeplitz (TN)k;] = <€Z 76” > = < 7zj>
Determinant
Asymptotics

Writing ® v = 2V 4 l.o. and using sums of rows and
columns, one sees that

Dn(p) = det(<®j, (I)k>)0§j, k<N

= [|@olf*--- [ @n ]




Szegd’'s Theorem and Toeplitz
Determinant Asymptotics

Since ||®;|| |, one sees that

: 1/N+1 1 2
Toeplitz ]\}1—13100 DN ('u) - ]\}E)nooH éN ”
Determinant

Asymptotics

Thus,
Toeplitz Determinant Form of Szegd's Theorem. For
any i,

log Div(x) = [ 1og £(6)5

N—o0 +1 2




Szegd’'s Theorem and Toeplitz
Determinant Asymptotics

Toeplitz
Determinant
Asymptotics

(o]
log D (1) = (N + 1) Lo + Y n[Ln[* + o(1)

n=1

This is the Strong Szegé Theorem. [OPUC1], Chap. 6 has
many proofs of this.



When are Polynomials Dense in
L*(0D, du)?

By Weierstrass’ Theorem, for any p of compact support on
R, the polynomials in x are dense in L?(R,dpu).

ool But this is not true for . Indeed, if du = %, the closure
Dense of the polynomials are those functions in L? whose negative
Fourier coefficient [ e~ f(e®)& =0 for n < —1. On the
other hand, we'll see soon that if supp(du) # 0D, the
polynomials are dense.



When are Polynomials Dense in
L*(0D, du)?

Theorem (Kolmogorov-Krein). If dy = f% + dus, then
the polynomials in z are dense in L?(0D, dyu) if and only if
[log f(eie)% = —00.

They found this because this density result was relevant to
their theory of prediction for stochastic processes.

Polynomials

Dense Given Szeg6's Theorem, the proof is almost trivial for

i%fuz—l — P|%, = inf|1 - 2P||%,

do
- log f—
Q|Q(0) 1||QHL2 eXp(/ ogf%)




When are Polynomials Dense in

L*(0D, du)?

So z~! € closure of polys < [ log f% = —o0.

Thus, if the integral is finite, 2! ¢ closure of polys and
thus, polynomials are not dense.

On the other hand, if z=! = lim P,, then

272 = lim,y00 Pn [lim,moo Pm] so all polynomials in z and
: 271 are in closure of polys and they are dense (by
Dane Weierstrass' other density theory).

Krein used this to show (see [SzThm], p. 319) that on R, if
dp = Fdx + dp,, then {€"“"},> are dense in

L? & ['8F) 4z = —co. This, in turn, implies that if
[lz|™ dp(x) < oo, the moment problem is indeterminate if
the integral is finite, for example,

dp(x) = e 1" dz, o<1



Strategy of the Proof

As with all good proofs of equalities, we'll prove two
inequalities. We'll use “entropy term” for exp| [ log f%] for
reasons that will become clear soon.

The proof that lim,, . ||®}|| is an upper bound will be
variational. We'll show that for any polynomial with
P(0) = 1, we have || P|| > entropy term.

Proof Strategy




Strategy of the Proof

The lower bound on the entropy term will come from the
fact that p — entropy term is weakly upper-semicontinuous
(usc), i.e., iy, — p = S(p) > limsup S(pn).

We'll prove that S(u) = [T (1 — |ay?)"/? for
Bernstein—Szego measures by direct calculation and then
use this and usc to get the other inequality.

Proof Strategy



Upper Bound

Lemma. For any polynomial P, with P(0) # 0, we have
that

o dO
[ 108lP(e)15 = log]P(0)

Remark. One proof notes that log(P(z)) is subharmonic.

Proof. If {z;}7], are zeros in D, let

Upper Bound
m

Qz) = [[ =22 p(2)

Z — Zi
j=1 J

Then log Q(z) is analytic in I, so



Upper Bound

de

o db )
log |Q(0)| =t [ 1oz 1Q(re™)| 57 = [ log|(e”)| 5

27
o dO
— [1og1P(e)15;]

Upper Bound

But, |Q(0)] = [T2%, |25 [P(0)] > |P(0)].



Upper Bound

For any polynomial, P, with P(0) # 0, du = f + dus, we
have

/|p(ei9)|2du(0) > /IP(ew)IZf(é’);lfr
_ /exp[2 log| P(¢"*)| + log (f(6))] o
> exp</2log(|P(ei")\;li)eXP(/logf;lz)>
(o dersen) o o1 2

by the Lemma. Thus

Upper Bound

inf /\P N2 dp > exp(/log(f(@)));lf_

P|P(0)=1



Upper Bound

One can also get a variational upper bound to complete the
proof. The idea is to consider the function

D(z) = exp (/ ZZ J_rz log(f(e))fllfr>

Formally, and we'll see later that D is actually in H?(DD)
and has boundary values, D(e¢) = lim,_,, D(re') exists
for a.e. 6 and |D(e)|? = f(6).

Upper Bound If dus =0, we have P(z) = D(0)/D(z) has P(0) = 0 and

[1PGIPdn = DOY [ 10 2170)57] = DO

— exp( [ 1og((0))5,)



Upper Bound

P isn't a polynomial but one can approximate by
polynomials . Handling du is a separate issue, but it can
be done (see [OPUC1], Section 2.5 and [SzThm], Section
2.12).

Upper Bound



The Bernstein—Szeg6 Case

Suppose aj = 0 for j > N. Then, we've seen that

do ;
dp= ()5, F(O)=Ilen(e)™?

Thus,
log f(6) = —2log|ei(e")| = log|| @ [|* — 21og| @3 ()]

Since ®%(2) is analytic in a nbhd of I, so is log(®%(2)), so

| 5 ToBl () = gl (0] =0

Bernstein—-Szegd

e Thus

do N 12
J1o250)5 = logjoi | = logH ~ o)

proving Szeg6's Theorem in this case.



The Szeg6 Integral as an Entropy

Given two prob. measures on 9D, we define their relative
entropy by

—00 if 1 is not v-a.e.
S| v) = {

- flog(fl—’;)dp if 1 is v-a.e.

For example, S(gdv | dv) = — [ glog(g)dv

Usually v is fixed and we vary p.

Szegd Integral as
an Entropy



The Szeg6 Integral as an Entropy

We claim that
do | ,do do
S<27T ‘ fﬂ + dMs) = /log(f(ﬂ))%

For 1 is v-a.e. iff f(0) # 0 for %—a.e. 6.1f f() =0ona
positive Lebesgue measure set, the integral is —oo, so both
sides are —oo0.

If £(0) # 0 for a.e. 6, ‘jl—’lf = f~lyg where xg is a set with
dus(S) =0 and |S| = 1. Clearly

Szegd Integral as
an Entropy —/log(j/:) :/log(f(ﬁ));lz




Variational Principle for S

Here is a basic fact which we'll make plausible but not
formally prove (but see Section 2.2 of [SzThm]).

Theorem. Let £(JD) be the continuous strictly positive
functions on OD. Then

S f S
where (n|v)= flgI%am (fsp,v)

Sthimm) = [ F@ivie) ~ [ 1+ 108(7(w) du

Proof. If du = gdv with g € £(0D), then

Slgigdv,) =1~ 1 [ log(g(s) du = S(gdv | v

Variational

Principle for S By an approximation argument (and control of dus) one
obtains

S(p|v)>infS



Variational Principle for S

Let's prove S(f;pu,v) > S(u | v) in case dus = 0 so

dv =g ldu
so that
SFimn) = [ Quio (f(@) dulz)
where
Qp(z) =xb™ ' —1—logx
Then

Qyz)=b"1—27!, Qlx)=2"2>0
50 Qp is convex, Qj(b) = 0, so Qy(x) > Qp(b), i-e.,
Qp(r) > —log(b)

Variational Th us
Principle for S

S(fimv) > — / log(9(x)) dp() = S(yt | v)



Variational Principle for S

For each fixed f in £(0D), S(f;u,v) is linear and weakly
continuous so the inf is concave and weakly usc, i.e.

Theorem. S(u | v) is jointly converse and jointly weakly
usc in | and v.

Corollary. Define Sz(p) = [log f2 ifdu= fL + dus.
Then o Sz(u) is Weak/y usc.

Variational
Principle for S



The end of the proof

Let 1 have Verblunsky coefficients, {av, }o°
Bernstein—Szeg8 approximation.

- Let py, be the
We've proven above that
n—1
n) = H P?
§=0
By weak usc

Sz(u) > lim Sz(py) = Hpj

which is the other inequality that we needed to prove.

End of the Proof
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