

Variationa Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Spectral Theory of Orthogonal Polynomials

Barry Simon IBM Professor of Mathematics and Theoretical Physics California Institute of Technology Pasadena, CA, U.S.A.

Lecture 2: Szegö Theorem for OPUC

Spectral Theory of Orthogonal Polynomials

- Variational Principle
- Sum Rule
- Toeplitz Determinant Asymptotics
- Polynomial Dense
- Proof Strategy
- Upper Bound
- Bernstein–Szegő Case
- Szegő Integral as an Entropy
- Variational Principle for *S*
- End of the Proof

- Lecture 1: Introduction and Overview
- Lecture 2: Szegö Theorem for OPUC
- Lecture 3: Three Kinds of Polynomials Asymptotics, I
- Lecture 4: Three Kinds of Polynomial Asymptotics, II

References

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

[OPUC] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series 54.1, American Mathematical Society, Providence, RI, 2005.

[OPUC2] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, 54.2, American Mathematical Society, Providence, RI, 2005.

[SzThm] B. Simon, Szegő's Theorem and Its Descendants: Spectral Theory for L^2 Perturbations of Orthogonal Polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Szegő's Theorem was proven by him in 1914 as a statement about Toeplitz Determinants as we discuss below.

In 1920–21, he rephrased it as a variational principle in OPUC. This (two-part) paper essentially invented the general theory of OPUC.

In these papers, Szegő assumed $d\mu$ was purely a.c. The addition of a singular continuous part is a discovery of Verblunsky in 1934–35 but his work was largely ignored and he didn't get credit until about fifteen years ago when, in a different context, Killip and Simon rediscovered his proof and then his paper.

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein-Szegó Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

 Φ_n has a variational form. Since $\Phi_n = \text{Proj of } z^n$ onto the orthogonal complement of $\{1, \ldots, z^{n-1}\}$,

$$\|\Phi_n\| = \mathsf{dist} ext{ of } z^n ext{ to span of } \{1,\ldots,z^{n-1}\}$$

$$= \min\{\|P\| \mid P \text{ monic }, \deg P = n\}$$

$$= \min\{\|P^*\| \mid P(0) = 1, \deg P = n\}$$

since P monic $\Leftrightarrow P^*(0) = 1$. This implies $\|\Phi_{n+1}\| \le \|\Phi_n\|$ which is obvious from $\|\Phi_n\| = \rho_0 \rho_1 \dots \rho_{n-1}$ and $\rho_j \le 1$.

Thus, clearly, $\lim_{n
ightarrow\infty} \lVert \Phi_n
Vert$ exists and

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

 $\lim_{n\to\infty} \|\Phi_n\| = \inf\{\|P\| \mid P(0) = 1, P \text{ is a polynomial }\}$

Szegő Theorem for OPUC. Let

$$d\mu = f(\theta) \, \frac{d\theta}{2\pi} + d\mu_s$$

be an arbitrary probability measure. Then

 $\inf\{\|P\|^2 \mid P(0) = 1, P \text{ is a polynomial }\}$ $= \exp\left(\int \log f(\theta) \frac{d\theta}{2\pi}\right)$

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

This innocuous-looking theorem will have remarkable consequences as we'll see, in part because it has multiple equivalent forms.

Because $\int f(\theta) \frac{d\theta}{2\pi} < \infty$, the integral cannot diverge to $+\infty$, but it can to $-\infty$ in which case, we interpret $\exp(***)$ as 0. Indeed, by Jensen's inequality and the concavity of log, the integral is non-positive and the exponential in [0, 1] as it must be given that $\|\Phi_0\| = 1$. One remarkable aspect of this theorem is that $d\mu_s$ doesn't enter!

Before turning to the proof, we consider some equivalent forms and consequences.

Szegő's Theorem as a Sum Rule

As we've seen,
$$\|\Phi_n\|=
ho_1\dots
ho_{n-1}$$
 so

$$\lim \|\Phi_n\|^2 = \prod_{j=0}^{\infty} (1 - |\alpha_j|^2)$$

Szegő Theorem (Sum Rule Version). If $d\mu = f(\theta) \frac{d\theta}{2\pi} + d\mu_s$, then

$$\sum_{j=0}^{\infty} \log(1 - |\alpha_j|^2) = \int \log(f(\theta)) \frac{d\theta}{2\pi}$$

This is a precursor of KdV sum rules. It is clearly equivalent to the variational form.

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

Szegő's Theorem as a Sum Rule

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomia Dense

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Corollary.
$$\sum_{j=0}^{\infty} |\alpha_j|^2 < \infty \Leftrightarrow \int \log(f(\theta)) \frac{d\theta}{2\pi} > -\infty.$$

A consequence of this is that $d\mu_s$ can be more or less arbitrary while one still has $\sum_{j=0}^{\infty} |\alpha_j|^2 < \infty$; for example, if $\int d\mu_s = \eta < 1$, $(1 - \eta) \frac{d\theta}{2\pi} + d\mu_s = d\mu$ has $\sum_{j=0}^{\infty} |\alpha_j(\mu)| < \infty$.

This is remarkable because we'll see in a future lecture that $\sum_{j=0}^{\infty} |\alpha_j| < \infty \Rightarrow d\mu$ is purely a.c. and $\varepsilon < |f(\theta)| < \varepsilon^{-1}$ for some $\varepsilon > 0$ and all θ .

It is also remarkable because it is not easy to construct operators with mixed spectrum and potential decay.

Given $\{c_n\}_{n=-\infty}^\infty$, the corresponding $N\times N$ Toeplitz matrix $T_N(c)$ has the form

$$\begin{pmatrix} c_0 & c_1 & \dots & c_{N-1} \\ c_{-1} & c_0 & \dots & c_N \\ \vdots & & \ddots & \vdots \\ c_{-N+1} & c_{-N+2} & \dots & c_0 \end{pmatrix}$$

i.e., $(T_N(c))_{ij} = c_{j-i}$. If μ is a measure, we set $c_j = \int e^{-ij\theta} d\mu(\theta)$ and write (μ is called the *symbol*)

$$D_N(\mu) = \det(T^{N+1}(\mu))$$

Variationa Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomia Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Notice that in the $L^2(d\mu)$ inner product,

$$(T_N)_{kj} = \langle e^{ik\theta}, e^{ij\theta} \rangle = \langle z^k, z^j \rangle$$

Writing $\Phi_N = z^N + 1.0$. and using sums of rows and columns, one sees that

$$D_N(\mu) = \det(\langle \Phi_j, \Phi_k \rangle)_{0 \le j, k \le N}$$
$$= \|\Phi_0\|^2 \cdots \|\Phi_N\|^2$$

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Since $\|\Phi_j\|\downarrow$, one sees that

$$\lim_{N \to \infty} D_N(\mu)^{1/N+1} = \lim_{N \to \infty} \|\Phi_N\|^2$$

Thus,

Toeplitz Determinant Form of Szegő's Theorem. For any μ ,

$$\lim_{N \to \infty} \frac{1}{N+1} \log D_N(\mu) = \int \log f(\theta) \frac{d\theta}{2\pi}$$

Aside: It is known that if $d\mu_s = 0$ and

$$\log(f(\theta)) \equiv \sum_{n=-\infty}^{\infty} \widehat{L}_n e^{in\theta}$$

Toeplitz Determinant

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

$$\sum_{n=1}^{\infty} n |\widehat{L}_n|^2 < \infty$$

then

$$\log D_N(\mu) = (N+1)\widehat{L}_0 + \sum_{n=1}^{\infty} n|\widehat{L}_n|^2 + o(1)$$

This is the Strong Szegő Theorem. [OPUC1], Chap. 6 has many proofs of this.

When are Polynomials Dense in $L^2(\partial \mathbb{D}, d\mu)$?

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomials Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

By Weierstrass' Theorem, for any μ of compact support on \mathbb{R} , the polynomials in x are dense in $L^2(\mathbb{R}, d\mu)$.

But this is not true for $\partial \mathbb{D}$. Indeed, if $d\mu = \frac{d\theta}{2\pi}$, the closure of the polynomials are those functions in L^2 whose negative Fourier coefficient $\int e^{-in\theta} f(e^{i\theta}) \frac{d\theta}{2\pi} = 0$ for $n \leq -1$. On the other hand, we'll see soon that if $\operatorname{supp}(d\mu) \neq \partial \mathbb{D}$, the polynomials are dense.

When are Polynomials Dense in $L^2(\partial \mathbb{D}, d\mu)$?

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomials Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case i

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Theorem (Kolmogorov-Krein). If $d\mu = f \frac{d\theta}{2\pi} + d\mu_s$, then the polynomials in z are dense in $L^2(\partial \mathbb{D}, d\mu)$ if and only if $\int \log f(e^{i\theta}) \frac{d\theta}{2\pi} = -\infty.$

They found this because this density result was relevant to their theory of prediction for stochastic processes.

Given Szegő's Theorem, the proof is almost trivial for

$$\inf_{P} \|z^{-1} - P\|_{L^{2}}^{2} = \inf_{P} \|1 - zP\|_{L^{2}}^{2}$$

$$= \inf_{Q|Q(0)=1} \|Q\|_{L^{2}}^{2} = \exp\left(\int \log f \frac{d\theta}{2\pi}\right)$$

When are Polynomials Dense in $L^2(\partial \mathbb{D}, d\mu)$?

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomials Dense

Proof Strategy

Upper Bound

Bernstein-Szegé Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

So $z^{-1} \in \text{closure of polys} \Leftrightarrow \int \log f \frac{d\theta}{2\pi} = -\infty.$

Thus, if the integral is finite, $z^{-1} \notin \text{closure of polys and}$ thus, polynomials are not dense.

On the other hand, if $z^{-1} = \lim P_n$, then $z^{-2} = \lim_{n \to \infty} P_n [\lim_{m \uparrow \infty} P_m]$ so all polynomials in z and z^{-1} are in closure of polys and they are dense (by Weierstrass' other density theory).

Krein used this to show (see [SzThm], p. 319) that on \mathbb{R} , if $d\rho = Fdx + d\rho_{\nu}$, then $\{e^{i\alpha x}\}_{\alpha \geq 0}$ are dense in $L^2 \Leftrightarrow \int \frac{\log F(x)}{1+x^2} dx = -\infty$. This, in turn, implies that if $\int |x|^n d\rho(x) < \infty$, the moment problem is indeterminate if the integral is finite, for example,

$$d\rho(x) = e^{-|x|^{\alpha}} \, dx, \quad \alpha < 1$$

Strategy of the Proof

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial: Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

As with all good proofs of equalities, we'll prove two inequalities. We'll use "entropy term" for $\exp\left[\int \log f \frac{d\theta}{2\pi}\right]$ for reasons that will become clear soon.

The proof that $\lim_{n\to\infty} ||\Phi_n^*||$ is an upper bound will be variational. We'll show that for any polynomial with P(0) = 1, we have $||P|| \ge$ entropy term.

Strategy of the Proof

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial: Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

The lower bound on the entropy term will come from the fact that $\mu \mapsto$ entropy term is weakly upper-semicontinuous (usc), i.e., $\mu_n \to \mu \Rightarrow S(\mu) \ge \limsup S(\mu_n)$.

We'll prove that $S(\mu) = \prod_{j=0}^{\infty} (1 - |\alpha_j|^2)^{1/2}$ for Bernstein-Szego measures by direct calculation and then use this and use to get the other inequality.

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein-Szegó Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Lemma. For any polynomial P, with $P(0) \neq 0$, we have that

$$\int \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \ge \log |P(0)|$$

Remark. One proof notes that $\log(P(z))$ is subharmonic. **Proof.** If $\{z_j\}_{j=1}^m$ are zeros in \mathbb{D} , let

$$Q(z) = \prod_{j=1}^{m} \frac{1 - \bar{z}_j z}{z - z_j} P(z)$$

Then $\log Q(z)$ is analytic in \mathbb{D} , so

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

$$\log |Q(0)| = \lim_{r \uparrow 1} \int \log |Q(re^{i\theta})| \frac{d\theta}{2\pi} = \int \log |Q(e^{i\theta})| \frac{d\theta}{2\pi}$$
$$= \int \log |P(e^{i\theta})| \frac{d\theta}{2\pi}$$

But,
$$|Q(0)| = \prod_{j=1}^{m} |z_j|^{-1} |P(0)| \ge |P(0)|.$$

For any polynomial, P, with $P(0)\neq 0,$ $d\mu=f\frac{d\theta}{2\pi}+d\mu_s,$ we have

$$\begin{split} \int |P(e^{i\theta})|^2 \, d\mu(\theta) &\geq \int |P(e^{i\theta})|^2 f(\theta) \frac{d\theta}{2\pi} \\ &= \int \exp\left[2\log|P(e^{i\theta})| + \log\left(f(\theta)\right)\right] \frac{d\theta}{2\pi} \\ &\geq \exp\left(\int 2\log\left(|P(e^{i\theta})| \frac{d\theta}{2\pi}\right) \exp\left(\int \log f \frac{d\theta}{2\pi}\right)\right) \\ \end{split}$$
(by Jensen) $\geq |P(0)|^2 \exp\left(\int \log|f(\theta)| \frac{d\theta}{2\pi}\right)$

by the Lemma. Thus

$$\inf_{P|P(0)=1} \int |P(e^{i\theta})|^2 \, d\mu \ge \exp\left(\int \log(f(\theta))\right) \frac{d\theta}{2\pi}$$

Variationa Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein-Szegé Case

Szegő Integral as an Entropy

Variational Principle for *S*

One can also get a variational upper bound to complete the proof. The idea is to consider the function

$$D(z) = \exp\left(\int \frac{e^{i\theta} + z}{e^{i\theta} - z} \log(f(\theta)) \frac{d\theta}{4\pi}\right)$$

Formally, and we'll see later that D is actually in $H^2(\mathbb{D})$ and has boundary values, $D(e^{i\theta}) = \lim_{r \to \infty} D(re^{i\theta})$ exists for a.e. θ and $|D(e^{i\theta})|^2 = f(\theta)$.

If $d\mu_s=0$, we have P(z)=D(0)/D(z) has P(0)=0 and

$$\int |P(z)|^2 d\mu = D(0)^2 \int f(\theta)^{-2} \left[f(\theta) \frac{d\theta}{2\pi} \right] = D(0)^2$$
$$= \exp\left(\int \log(f(0)) \frac{d\theta}{2\pi} \right)$$

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomia Dense

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomia Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

P isn't a polynomial but one can approximate by polynomials . Handling $d\mu_s$ is a separate issue, but it can be done (see [OPUC1], Section 2.5 and [SzThm], Section 2.12).

The Bernstein–Szegő Case

Suppose
$$lpha_j=0$$
 for $j\geq N.$ Then, we've seen that

$$d\mu = f(\theta) \frac{d\theta}{2\pi}, \quad f(\theta) = |\varphi_N^*(e^{i\theta})|^{-2}$$

Thus,

$$\log f(\theta) = -2\log|\varphi_N^*(e^{i\theta})| = \log||\Phi_N^*||^2 - 2\log|\Phi_N^*(e^{i\theta})|$$

Since $\Phi_N^*(z)$ is analytic in a nbhd of $ar{\mathbb{D}}$, so is $\logig(\Phi_N^*(z)ig)$, so

$$\int \frac{d\theta}{2\pi} \log|\Phi_N^*(e^{i\theta})| = \log|\Phi_N^*(0)| = 0$$

Thus,

$$\int \log f(\theta) \frac{d\theta}{2\pi} = \log \|\Phi_N^*\|^2 = \log \prod_{j=0}^{N-1} (1 - |\alpha_j|^2)^{1/2}$$

proving Szegő's Theorem in this case.

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomia Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Given two prob. measures on $\partial \mathbb{D},$ we define their relative entropy by

$$S(\mu \mid \nu) = \begin{cases} -\infty & \text{if } \mu \text{ is not } \nu\text{-a.e.} \\ -\int \log \left(\frac{d\mu}{d\nu}\right) d\mu & \text{if } \mu \text{ is } \nu\text{-a.e.} \end{cases}$$

For example, $S(gd\nu \mid d\nu) = -\int g \log(g) d\nu$ Usually ν is fixed and we vary μ .

The Szegő Integral as an Entropy

We claim that

$$S\left(\frac{d\theta}{2\pi} \mid f\frac{d\theta}{2\pi} + d\mu_s\right) = \int \log(f(\theta))\frac{d\theta}{2\pi}$$

For μ is ν -a.e. iff $f(\theta) \neq 0$ for $\frac{d\theta}{2\pi}$ -a.e. θ . If $f(\theta) = 0$ on a positive Lebesgue measure set, the integral is $-\infty$, so both sides are $-\infty$.

If $f(\theta) \neq 0$ for a.e. θ , $\frac{d\mu}{d\nu} = f^{-1}\chi_S$ where χ_S is a set with $d\mu_s(S) = 0$ and |S| = 1. Clearly

$$-\int \log\left(\frac{d\mu}{d\nu}\right) = \int \log\left(f(\theta)\right)\frac{d\theta}{2\pi}$$

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomia Dense

Proof Strategy

Upper Bound

Bernstein-Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

Variational Principle for S

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial: Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for S

End of the Proof

Here is a basic fact which we'll make plausible but not formally prove (but see Section 2.2 of [SzThm]).

Theorem. Let $\mathcal{E}(\partial \mathbb{D})$ be the continuous strictly positive functions on $\partial \mathbb{D}$. Then

where

$$\begin{split} & \mathcal{S}(\mu \mid \nu) = \inf_{f \in \mathcal{E}(\partial \mathbb{D})} \mathcal{S}(f; \mu, \nu) \\ & \mathcal{S}(f; \mu, \nu) = \int f(x) d\nu(x) - \int 1 + \log(f(x)) \, d\mu \end{split}$$

Proof. If $d\mu = gd\nu$ with $g \in \mathcal{E}(\partial \mathbb{D})$, then $\mathcal{S}(g; gd\nu, \nu) = 1 - 1 - \int \log(g(x)) d\mu = S(gd\nu \mid \nu)$

By an approximation argument (and control of $d\mu_s$) one obtains

 $S(\mu \mid \nu) \ge \inf \mathcal{S}$

Variational Principle for S

Let's prove $\mathcal{S}(f; \mu, \nu) \geq S(\mu \mid \nu)$ in case $d\mu_s = 0$ so $d\nu = q^{-1}d\mu$

so that

$$\mathcal{S}(f;\mu,\nu) = \int Q_{g(x)}(f(x)) \, d\mu(x)$$

where

$$Q_b(x) = xb^{-1} - 1 - \log x$$

Then

$$Q_b'(x)=b^{-1}-x^{-1},\quad Q_b''(x)=x^{-2}\geq 0$$
 so Q_b is convex, $Q_b'(b)=0,$ so $Q_b(x)\geq Q_b(b),$ i.e.,
$$Q_b(x)\geq -\log(b)$$
 Thus

 $\mathcal{S}(f;\mu,\nu) \ge -\int \log(g(x)) d\mu(x) = S(\mu \mid \nu)$

Variational Principle for S

Variational Principle for S

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegő Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

For each fixed f in $\mathcal{E}(\partial \mathbb{D})$, $\mathcal{S}(f; \mu, \nu)$ is linear and weakly continuous so the inf is concave and weakly usc, i.e.

Theorem. $S(\mu \mid \nu)$ is jointly converse and jointly weakly usc in μ and ν .

Corollary. Define $Sz(\mu) = \int \log f \frac{d\theta}{2\pi}$ if $d\mu = f \frac{d\theta}{2\pi} + d\mu_s$. Then $\mu \mapsto Sz(\mu)$ is weakly usc.

The end of the proof

Variational Principle

Sum Rule

Toeplitz Determinant Asymptotics

Polynomial Dense

Proof Strategy

Upper Bound

Bernstein–Szegć Case

Szegő Integral as an Entropy

Variational Principle for *S*

End of the Proof

Let μ have Verblunsky coefficients, $\{\alpha_n\}_{n=0}^{\infty}$. Let μ_n be the Bernstein–Szegő approximation.

We've proven above that

$$Sz(\mu_n) = \prod_{j=0}^{n-1} \rho_j^2$$

By weak usc

$$Sz(\mu) \ge \overline{\lim} Sz(\mu_n) = \prod_{j=0}^{\infty} \rho_j^2$$

which is the other inequality that we needed to prove.