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Asymptotics of Chebyshev of Second Kind

Since

sin(n± 1)θ = sinnθ cos θ ± cosnθ sin θ

we have that

sin(n+ 1)θ + sin(n− 1)θ = 2 cos θ(sinnθ)

If fn(θ) = sin(n+1)θ
sin θ , then f−1 = 0, f0 = 1, and

fn+1 + fn−1 = (2 cos θ)fn.

Thus, by induction, fn(θ) is a polynomial in 2 cos θ of
degree n, i.e.,

fn(θ) = pn(2 cos θ)

where

pn+1(x) + pn−1(x) = xpn(x); p−1 = 0, p0 = 1
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Asymptotics of Chebyshev of Second Kind

Thus, {pn(x)}∞n=0 are the orthonormal OPs with Jacobi
parameters, bn ≡ 0, an ≡ 1.

x = 2 cos θ (leads to quadratic equation for eiθ) so

e±iθ =
x

2
±
√

1−
(x

2

)2
WARNING: I am very bad at calculations. Factors of 2, π,
etc., could be wrong.

Since sin(kθ) are orthogonal for dθ
2π , fn(θ) are orthogonal

for sin2 θ dθ2π (for normalization on [0, 2π]).
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Asymptotics of Chebyshev of Second Kind

But θ 7→ x = 2 cos θ is 2 to 1 from [0, 2π] to [−2, 2], so we
want to look at 2 sin2 θ dθ2π on [0, π].

x = 2 cos θ ⇒ dx = 2 sin θdθ, so the measure is

sin θdx =
√

1−
(
x
2

)2
dx, i.e.,

dµ(x) =
1

2π

√
4− x2 dx

is the orthogonality measure for this problem.
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Asymptotics of Chebyshev of Second Kind

If x /∈ [−2, 2] (x ∈ C), e±iθ have di�erent rates of growth
so one dominates for sin(n+ 1)θ/ sin θ for n large, i.e.,

|pn(x)|�
∣∣∣∣x2 +

√
1−

(
x

2

)∣∣∣∣n → 1

as n→∞. x 6∈ [−2, 2] is critical to avoid oscillation.

There is a branch of
√

so |· · ·| > 1 on C \ [−2, 2].

One question we'll answer is where x
2 +

√
1−

(
x
2

)2
comes

from.
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Three Kinds of Asymptotics

What does it mean to say that a sequence, yn ∼ an for n
large?

Root asymptotics: |yn|1/n → |a|.

Ratio asymptotics: yn+1

yn
→ a.

Szeg® asymptotics: yn/Aa
n → 1 for some A.
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Three Kinds of Asymptotics

A second theme in this pair of lectures will be to explore
when these conditions hold for OPUC/OPRL close to the
�free� case (αn ≡ 0 for OPUC; an ≡ 1, bn ≡ 0 for OPRL).

We'll look at this asymptotics away from supp(dµ) because
on supp(dµ), the asymptotics are typically unusual (decay
rather than growth for isolated points in supp(dµ);
oscillation on the a.c. part of dµ.)

That said, asymptotic behavior on the spectrum can have
important consequences as we'll illustrate with the theory of
L1 perturbations.
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OPUC Transfer Matrices

We begin by looking at all solutions of the di�erence
equations that describe recursion. In some sense, they are
both second order, so there is a 2× 2 �update� matrix that
takes data at n = 0 to data at n = m.

For OPUC, we saw that A(z;αn)(
ϕn

ϕ∗n
) = (

ϕn+1

ϕ∗n+1
)

A(z;α) = ρ−1
(

z −ᾱ
−αz 1

)
Notice that detA(z;α) = z, so for z 6= 0, z ∈ C, we have
A invertible and for z ∈ ∂D,

‖A−1‖ = ‖A‖
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OPUC Transfer Matrices

De�ne the transfer matrix by

Tn(z;αn−1, . . . , α0) = A(z;αn−1)A(z;αn−2) · · ·A(z;α0)

Thus,
(
ϕn
ϕ∗n

)
= Tn

(
1
1

)
The second kind of polynomials are de�ned by(

ψn
−ψ∗n

)
= Tn

(
1
−1

)
A little thought using(

1 0
0 −1

)
A(z;α)

(
1 0
0 −1

)
= A(z;−α)

shows that

ψn
(
z; {αj}n−1j=0

)
= ϕn

(
z; {−αj}n−1j=0

)
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OPUC L1 Perturbation

As a simple application of transfer matrices for OPUC, we
prove

Theorem. If ∞∑
j=0

|αj | <∞

then dµ = w(θ) dθ2π with inf w > 0, suppw <∞ (so

dµs = 0).

Remarks. 1. Our proof can be slightly extended to show w
is continuous.

2. A much stronger result is known (Baxter's Theorem):∑∞
j=0|αj(dµ)| <∞⇔

∑∞
j=0|cj(dµ)| <∞+(dµ = w(θ) dθ2π ,

w continuous with inf w > 0.)
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OPUC L1 Perturbation

Notice that for |z| = 1, we have that (Euclidean norm on
C2)

‖A(z;α)‖ ≤ 1 + |α| ≤ e|α|

Thus, ‖Tn(z;α0, · · ·αn−1)‖ ≤ e
n−1∑
0
|αj |

so sup|z|=1,n |ϕn(t)| ≤ e
∞∑
0
|αj |

but ‖A−1‖ = ‖A‖ for |z| = 1 and |ϕ| = |ϕ∗|

implies inf |z|=1,n |ϕn(t)| ≥ e
−
∞∑
0
|αj |

Thus, by Bernstein�Szeg®, we get the desired result.
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OPRL Transfer Matrix

Consider the di�erence equation

un+1 = a−1n
(
(z − bn)un − an−1un−1

)
un = pn−1(z) solves this equation with u0 = 0, u1 = 1.

The di�erence equation can be rewritten (we take a0 = 1)(
un+1

anun

)
= A(z; an, bn)

(
un

an−1 un−1

)
;

A(z; a, b) =
1

a

(
z − b −1
a2 0

)
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OPUC L1 Perturbation

The reason for the funny an in the lower component (a
suggestion of Killip) is that it makes

detA = 1

This implies if u, v are two solutions (same z) that
(courtesy of Wronkian) an(un+1vn − unvn+1) = constant.

As for OPUC, we de�ne

Tn(z; {aj , bj}nj=1) = A(z; an, bn) · · ·A(z : a1, b1) so

Tn

(
1
0

)
=

(
pn(z)

anpn−1(z)

)
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OPRL L1 Perturbation

In the free Jacobi matrix case,

A0(z) =

(
z −1
1 0

)
Since ‖A0(z)( 1

0 )‖ = ‖( z1 )‖ = 1 + |z|2, except for z = 0,
A0(z) is not a contraction in the Euclidean norm. Since (as
we'll see) supn‖A0(z)

n‖ is bounded for z ∈ (−2, 2), this
isn't a problem for A0 but it makes perturbations tricky.

We'll overcome this by changing norm. In essence, the
plane wave solutions will be a basis, so this is essentially a
variation of parameters argument.
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OPRL L1 Perturbation

We are heading towards a proof of

Theorem. Let {an, bn}∞n=1 ⊂
[
(0,∞)× R

]∞
obey

∞∑
n=1

|an − 1|+ |bn| <∞

Then, for any ε > 0, there is Cε > 0 so that for all n and

all x ∈ [−2 + ε, 2− ε], we have

Cε ≤ |pn(x)|2 + |pn−1(x)|2 ≤ C−1ε

In particular (since 0 < inf an < sup an <∞), J has purely

a.c. spectrum in (−2, 2).
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OPRL L1 Perturbation

Since detA0(2 cos θ) = 1, Tr
(
A0(2 cos θ)

)
= 2 cos θ, the

eigenvalues of A0(2 cos θ) are ±eiθ. Thus, for x ∈ (−2, 2),
there is U(x) so

U(x)A0(x)U(x)−1 =

(
eiθ(x) 0

0 e−iθ(x)

)
We de�ne

‖B‖x = ‖U(x)BU(x)−1‖

where ‖·‖ without an x is Euclidean norm. ‖·‖x is a Banach
algebra norm on Hom(C2), since

U(x)BCU(x)−1 =
[
U(x)BU(x)−1

][
U(x)CU(x)−1

]
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OPRL L1 Perturbation

U(x) is singular at x = ±2 but on (−2, 2) it can be chosen
real analytic (and, in particular, so U(x) and U(x)−1 are
bounded on each [−2 + ε, 2− ε]).

Thus, for each interval, there is Dε > 0 so for all x in the
interval and B

Dε‖B‖ ≤ ‖B‖x ≤ D−1ε ‖B‖

The point, of course, is that ‖A0(x)‖x = 1, so

‖anAn(x; an, bn)‖x ≤ 1 + Ex
[
‖an − 1‖+ ‖bn‖

]
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OPRL L1 Perturbation

Since δ ≤ an ≤ δ−1 and
∑

n|an − 1| <∞,
∏n
j=1 aj and its

inverse converge and are uniformly bounded.

We conclude ‖Tn‖x and ‖T−1n ‖x and so ‖Tn‖ and ‖T−1n ‖
are uniformly bounded on [−2 + ε, 2 + ε] which yields the
claimed estimates.
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Szeg® Asymptotics for OPUC

For OPUC, the condition for dµ = f(θ) dθ2π + dµs∫
log f(θ)

dθ

2π
> −∞

is called the Szeg® condition. When it holds, we de�ne the
Szeg® function, D(z), on D by

D(z) = exp

(∫
eiθ + z

eiθ − z
log
(
f(θ)

)dθ
4π

)
Lemma. If the Szeg® condition holds, D ∈ H2(D), indeed,

sup
0≤r<1

∫
|D(reiθ)|2 dθ

2π
≤ 1

and, with D(eiθ) ≡ limr↑1D(reiθ),

|D(eiθ)|2 = f(θ)
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Szeg® Asymptotics for OPUC

Proof. Let fε(θ) = min
(
f(θ), ε−1

)
. Then log

(
fε(θ)

)
is

bounded above by log(ε−1), so

Re

(∫
eiθ + z

eiθ − z
log
(
fε(θ)

)dθ
4π

)
≤ 1

2
log(ε−1)

so |Dε| ≤ ε−1/2. Thus, Dε lies in H
∞ and has boundary

values
|Dε(e

iθ)|2 = fε(θ)

Therefore, Dε ∈ H2 and

sup
0≤r<1

∫
|Dε(re

iθ)|2 dθ
2π

=

∫
|Dε(e

iθ)|2 dθ
2π
≤ 1

Taking ε ↓ 0, we see that D ∈ H2 and the rest follows.
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Szeg® Asymptotics for OPUC

We have the following beautiful calculation of Szeg®:∫
|ϕ∗n(eiθ)D(eiθ)−1|2 dθ

2π
+

∫
|ϕ∗n(eiθ)|2dµs = 2

(
1−
∏∞
j=n ρj

)
For

LHS =

∫
dθ

2π
+

∫
|ϕ∗n(eiθ)|2dµ− 2 Re

∫
D(eiθ)ϕ∗n(eiθ)

dθ

2π

= 2− 2 Re
(
D(0)ϕ∗n(0)

)
= 2

[
1−

∏∞
j=0 ρj

(∏n−1
j=0 ρ

−1
j

)]
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Szeg® Asymptotics for OPUC

Since RHS → 0 as n→∞ (if the product converges, i.e., if
the Szeg® condition holds), each term goes to zero.

Thus
∫
|ϕ∗n(eiθ)|2dµs → 0 and ϕ∗nD → 1 in L2(∂D, dθ2π ).

Since the Poisson kernel Pz(e
iθ) is L2 uniformly for

|z| ≤ r < 1, ϕ∗n(z)D(z)→ 1 uniformly on |z| ≤ r < 1.

Thus, uniformly in |z| ≥ r−1 > 1,

z−nϕn(z)→
[
D

(
1

z

)]−1
which is Szeg® asymptotics for ϕn.



Chebyshev Asym

Three Asym

OPUC Transfer
Matrices

OPUC L1 Pert

OPRL Transfer
Matrix

OPRL L1 Pert

OPUC Sz Asym

Szeg® Mapping

[−2, 2] Sz Asym

DOS

Thouless Formula

Potential Theory

Regular Measures

Ratio Asym

The Szeg® Mapping

We now turn to OPRL with µ supported on [−2, 2]. Since
we'll later consider a related result which generalizes this,
we'll only sketch or, even hand wave, some details.

The map
z 7→ x = z + z−1

(called the Joukowski map) is a 2 to 1 map of ∂D to [−2, 2]
that takes eiθ to 2 cos θ in the limit.
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The Szeg® Mapping

Q(eiθ) = 2 cos θ induces a map of C
(
[−2, 2]

)
to C(∂D) by(

Qf
)
(eiθ) = f

(
Q(eiθ)

)
. It is onto the even functions, i.e.,

g(e−iθ) = g(eiθ). By duality, it de�nes a dual map Sz:

Even measures on ∂D to some probability measures on
[−2, 2] by dρ = Sz(dµ)∫

f
(
arccos

(x
2

))
dρ(x) =

∫
f(θ) dµ(θ)
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The Szeg® Mapping

Let Pn be the monic OP's for dρ = Sz(dµ) and Φn for µ.
Then

Pn(z +
1

z
) =

[
1− α2n−1(dµ)

]−1
z−n

[
Φ2n(z) + Φ∗2n(z)

]
This can be proven by noting �rst that the right side is a
Laurent polynomial of z, even under z → 1

z and every
such Laurent polynomial has the form Qn(z + 1

z ).
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The Szeg® Mapping

By an easy computation
∫

(RHS for n) (RHS for `) dµ = 0
if n 6= `, so the Qn's are OP and by the leading term, it is
monic.

By computing 〈Φ2n,Φ
∗
2n〉 = −α2n−1‖Φ2n‖2, one �nds

‖Pn‖2L2(dρ) = 2(1− α2n−1)
−1‖Φ2n‖2L2(dµ)

This implies that

(a1 · · · an)2 = 2(1 + α2n−1)
∏2n−2
j=0 (1− α2

j )
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The Szeg® Mapping

One also �nds (Section 13.1 and 13.2 of [OPUC2] have two
di�erent proofs)�known as Geronimus relations

a2n+1 = (1− α2n−1)(1− α2
2n)(1 + α2n+1)

bn+1 = (1− α2n−1)α2n − (1 + α2n−1)α2n−2
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Szeg® Asymptotics for [−2, 2]

From a2n · · · a21 = 2(1 + α2n−1)
∏2n−1
j=0 (1− α2

j ), one sees

∞∑
j=1

|αj |2 <∞⇔ lim sup a1 · · · an > 0

This leads to

Shohat�Nevai Theorem.Let dµ = f(x) dx+ dµs be

supported on [−2, 2]. Then

lim sup a1 · · · an > 0⇔
∫ 2

−2
(4−x2)−1/2 log

(
f(x)

)
dx > −∞

If that holds, then∑∞
n=1(an − 1)2 + b2n <∞, lim a1 · · · aN ,

lim
∑N

n=1(an − 1) and lim
∑N

n=1 bn all exist.
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Szeg® Asymptotics for [−2, 2]

It is critical that we require that support(dµ) ⊂ [−2, 2], i.e.,
no eigenvalues outside [−2, 2]�unnatural from perturbation
theory point of view.∫ 2
−2(4− x

2)−1/2 log
(
f(x)

)
dx > −∞ is called the Szeg®

condition.

x = 2 cos θ ⇒ dx = 2 sin θdθ⇒ dθ = dx
2 sin(θ)

⇒ dθ = (4− x2)−1/2 dx.

The other relations follow from Geronimus relations.
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Szeg® Asymptotics for [−2, 2]

Recall that

Pn(z +
1

z
) =

[
1− α2n−1(dµ)

]−1
z−n

[
Φ2n(z) + Φ∗2n(z)

]
and for |z| > 1,

z−2nΦ2n(z)→ D(0)/D
(1

z

)
By the maximum principle (1 + ε)−2nΦ2n(z)→ 0 for
|z| > 1, so z−2nΦ∗2n(z)→ 0.

Thus, we obtain
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Szeg® Asymptotics for [−2, 2]

Theorem (Szeg® asymptotics for [−2, 2], with no bound
states). If the Szeg® condition holds, then, for |z| > 1

z−nPn(z +
1

z
)→ G(z) ≡

[
1− α2n−1(dµ)

]−1
D(0)/D

(1

z

)
Equivalently, for x ∈ C \ [−2, 2](

x

2
+

√(x
2

)
− 1

)−n
Pn(x)→ G̃(x)
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The Density of Zeros

I now say a little about root and ratio asymptotics. In the
�nal lectures, I hope to return to this subject.

As a warm-up for root asymptotics, let JN be the N ×N
truncated Jacobi matrix (with b1, . . . , bn along the
diagonal). Let Dn(z) = det(z − JN ). Then, expanding in
minors:

DN = −a2N−1DN−2 + (z − bN )DN−1; D0 = 1, D−1 = 0

Thus DN (z) = PN (z).

which implies zero of PN = eigenvalues of JN are real and
simple.
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The Density of Zeros

For each N , let x
(N)
1 < · · · < x

(N)
N be the zeros. By the

variational principle, x
(N)
j < x

(N+1)
j < x

(N+1)
j+1 , i.e., zero

interlace. Let

ν(N) =
1

N

N∑
j=1

δ
x
(N)
j

If
ν = w-lim ν(N)

exists, we say ν is the density of zeros, aka, density of
states.
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The Density of Zeros

ν is boundary condition independent, e.g., if

Jper
N =

 b1 . . . aNe
iθ

...
. . .

...
aNe

−iθ . . . bN


w-lim ν

(N)
per = w-lim ν(N)

For ∫
x` dν(x) = lim

N→∞

1

N
Tr(J `n)

and |Tr(J `N )− Tr
(
(Jper
N )`

)
| is bounded.
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Thouless Formula

The DOS is intimately connected to root asymptotics
because

pn(z) = (a1 · · · an)−1
N∏
j=1

(z − x(n)j )

so

1

n
log |pn(z)| = − 1

n
log (a1 · · · an) +

∫
log |z − x| dν(N)(x)

Theorem (Thouless Formula). If DOS exists and

lim(a1 · · · an)1/n = c(dµ)

exists, then for z ∈ C \ R, (Φµ(z) =
∫

log |z − x|−1 dµ(x)
is the potential of µ)

lim
1

n
log |pn(z)| = − log c(dµ) +

∫
log |z − x| dν(x)
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Connection to Potential Theory

Given any compact set, e, we say e has zero capacity if

E(µ) =

∫
dµ(x) dµ(y) log |x− y|−1

is in�nite for all µ ∈M+,1(e).

(Note: the integral is either +∞ or �nite.)

If e does not have zero capacity, we de�ne C(e) by

C(e) = exp
(
− inf
µ∈M+,1(e)

E(µ)
)
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Connection to Potential Theory

It is a fundamental theorem that if C(e) > 0, there is a
unique probability measure, ρe, called the equilibrium

measure or the harmonic measure for e with E(ρe) =
inf E(µ).

Tn,e, the Chebyschev polynomial for e, is the (it turns out
unique) monic polynomial of degree n with

‖Tn,e‖∞,e = inf
P monic

‖P‖∞,e; ‖f‖∞,e = sup
x∈e
|f(x)|

Theorem (Faber�Fekete-Szeg®).

‖Tn‖1/n∞,e ≥ C(e) and lim
n→∞

‖Tn‖1/n∞,e = C(e)
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Regular Measures

Since ‖Tn‖L2(dµ) ≤ ‖Tn‖∞,e, if

e = supp(µ)

and ‖Pn‖L2(dµ) ≤ ‖Tn‖L2(dµ) (by variational principle)

lim sup(a1 · · · an)1/n ≤ C(e).

We call µ regular (with supp(µ) = e ⊂ R) if
limn→∞(a1 · · · an)1/n = C(e).

Pioneers are Ulmann (for e = [0, 1]) and Stahl�Totik
(e ∈ C).

See also Simon, Inv. Prob. Imaging 1 (2007), 189�215.
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Regular Measures

If µ is regular, the DOS exists and equals the equilibrium
measure for e.

Thus, for z ∈ C \ R, limn→∞ |pn(z)|1/n = eGe(z).

Ge(z) = log
(
C(e)

)−1 − Φρe(z)

This is the potential theorists' Green's Function, the unique
function subharmonic on C, harmonic on C \ e, equal to 0
q.e. on e and log (|z|) +O(1) at ∞.
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Ratio Asymptotics

Szeg®'s Asymptotic Theorem for OPUC says
Φ∗n(z)→ D(0)D(z)−1 as n→∞ so Φ∗n+1/Φ

∗
n → 1. We

state without proof

Krushchev's Theorem (see [OPUC2], Section 9.5).

Φ∗n+1(z)/Φ
∗
n(z) converges uniformly on each

{z | |z| < 1− ε} if and only if either

For ` = 1, 2, . . ., limn→∞ αn+` αn = 0; limit is then 1.

OR ∃ a ∈ (0, 1] and λ ∈ ∂D so limn→∞|αn| = 0,
limn→∞ ᾱn+1 αn = a2 λ

and then limit 1
2

[
(1 + λz) +

√
(1− zλ)2 + 4a2 λz

]
.
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Ratio Asymptotics

For OPRL, we have

Simon's Theorem (J. Approx. Th. 128 (2004), 198�217).

For OPRL if limn→∞
Pn+1(z)
Pn(z)

exists at a single point in

C \R, it exists at all points and this happens if and only if
for some a ∈ [0,∞), b ∈ R

lim
n→∞

an = a, lim
n→∞

bn = b

and the limit is

1

2

[
(z−b)+

√
(z − b)2 − 4a2

]
(root with

√
= z near ∞)
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Ratio Asymptotics

Closely related to ratio asymptotics (because the
conclusions imply ratio asymptotics) are

Rakhmanov's Theorem. If dµ = f(θ) dθ2π + dµs and

f(θ) > 0 for a.e. θ, then αn → 0.

Denisov�Rakhamanov Theorem. If dµ = f(x) dx+ dµz
and f(x) > 0 on [−2, 2) and σ(ess)(J) = [−2, 2], then
an → 1, bn → 0.

I hope to say more about this in Lecture 11 or 12.

Moral is ratio and Szeg® asymptotics unusual. Expect
oscillations.
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