

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 ${f Step-by-Step} \Rightarrow {f Result}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

Spectral Theory of Orthogonal Polynomials

Barry Simon IBM Professor of Mathematics and Theoretical Physics California Institute of Technology Pasadena, CA, U.S.A.

Lecture 5: Killip–Simon Theorem on [-2, 2]

Spectral Theory of Orthogonal Polynomials

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 ${f Step-by-Step} \Rightarrow {f Result}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

- Lecture 3: Three Kinds of Polynomials Asymptotics, I
- Lecture 4: Three Kinds of Polynomial Asymptotics, II
- Lecture 5: Killip–Simon Theorem on [-2, 2]
- Lecture 6: Szegő Asymptotics and Shohat-Nevai for [-2,2]

References

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

[OPUC] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series 54.1, American Mathematical Society, Providence, RI, 2005.

[OPUC2] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, 54.2, American Mathematical Society, Providence, RI, 2005.

[SzThm] B. Simon, Szegő's Theorem and Its Descendants: Spectral Theory for L^2 Perturbations of Orthogonal Polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Stej Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story In 2000, Rowan Killip and I proved the following OPRL analog of Szegő's Theorem.

Theorem. Let $d\mu(x) = f(x) dx + d\mu_s$ with Jacobi parameters $\{a_n, b_n\}_{n=1}^{\infty}$. Then

$$\sum_{n=1}^{\infty} (a_n - 1)^2 + b_n^2 < \infty$$

if and only if

(i) (Blumental-Weyl) $\sigma_{\rm ess}(J) = {\rm ess} \, {\rm supp}(d\mu) = [-2,2]$, i.e., ${\rm supp}(d\mu)$ is a set of pure points whose only possible limit points are ± 2 : $E_1^- < E_2^- < \ldots < -2$; $2 < \ldots < E_2^+ < E_1^+$.

(ii) (Lieb-Thirring) $\sum_{\pm,j} (|E_j^{\pm}| - 2)^{3/2} < \infty.$ (iii) (Quasi-Szegő) $\int (x^2 - 4)^{1/2} \log (f(x)) dx < \infty.$

If J_0 is the Jacobi matrix, $a_n \equiv 1$, $b_n \equiv 0$, the L^2 condition is

$$\mathrm{Tr}\big((J-J_0)^2\big) < \infty$$

Weyl's Theorem says $J - J_0$ compact $\Rightarrow \sigma_{ess}(J) = \sigma_{ess}(J_0) = [-2, 2].$

For Schrödinger operators in 1D (and so on half line), Lieb-Thirring proved (initially for p > 1/2, p = 1/2 is Weidl and then Hundertmark-Lieb-Thomas)

$$\sum_{E_j,\pm} |E_j^{\pm}|^p \le C_p \int_0^\infty |V(x)|^{p+\frac{1}{2}}$$

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow Result$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphi Herglotz Functions

Case Sum Rules

End of the Story

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 ${f Step-by-Step} \Rightarrow {f Result}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

Hundertmark-Simon (Killip-Simon for p = 3/2)

$$\sum \left(|E_j^{\pm}| - 2 \right)^{p/2} \le \widetilde{C}_p \sum_{n=0}^{\infty} |a_j - 1|^{p+\frac{1}{2}} + |b_j|^{p+\frac{1}{2}}$$

Quasi-Sezgő because power is $+1/2,\ \text{not}\ -1/2$ of Szegő condition.

P_2 -Sum Rule

Define F on $\mathbb{R} \setminus [-2,2]$ by $F(\beta + \beta^{-1}) = \frac{1}{4} [\beta^2 - \beta^{-2} - \log(\beta^4)];$ $F(E) = \frac{1}{2} \int_{0}^{|E|} (y^2 - 4)^{\frac{1}{2}} dy$ so F(E) > 0 and $F(E) = \frac{2}{3} (|E| - 2)^{\frac{3}{2}} + O((|E| - 2)^{\frac{5}{2}}).$ Define $G(a) = a^2 - 1 - \log(a^2)$, so G(a) > 0 on $(0, \infty) \setminus \{1\}$; $G(a) = 2(a-1)^2 + O((a-1)^3)$.

$$Q(\mu) = \frac{1}{4\pi} \int_{-2}^{2} \log\left(\frac{\sqrt{4-x^2}}{2\pi f(x)}\right) \sqrt{4-x^2} \, dx$$

$$= -\frac{1}{2}S(\mu_0 \mid \mu); \ \mu_0 = (a_n \equiv 0, b_n \equiv 0) \ {\sf measure}$$

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 ${f Step-by-Step} \Rightarrow {f Result}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

P_2 -Sum Rule

Killip-Simon Theorem

P_2 -Sum Rule

Step-by-Stej Sum Rules

 $Step-by-Step \Rightarrow$ Result

m- Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story P_2 -Sum Rule:

$$Q(\mu) + \sum F(E_n^{\pm}) = \sum_{n=1}^{\infty} \left[\frac{1}{4} b_n^2 + \frac{1}{2} G(a_n)\right]$$

$$\begin{split} & \text{if } \sigma_{\mathrm{ess}}(\mu) = [-2,2]. \\ & \text{RHS} < \infty \Leftrightarrow \sum_{n=1}^{\infty} b_n^2 + (a_n-1)^2 < \infty. \\ & \text{LHS} < \infty \Leftrightarrow \text{Quasi-Szeg} \delta + \sum_{n,\pm} \left(|E_n^{\pm}| - 2 \right)^{\frac{3}{2}} < \infty. \\ & \text{Thus } P_2\text{-sum rule} \Rightarrow \text{KS Theorem.} \end{split}$$

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow Result$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

Consider first OPUC. Given μ with Verblunsky coefficients $\{\alpha_n\}_{n=0}^{\infty}$, we define the once stripped measure, μ , by

$$\alpha_j(\mu_1) = \alpha_{j+1}(\mu)$$

i.e., drop α_0 and shift left.

If μ obeys a Szegő condition, so does μ_1 and if $d\mu_1=f_1\frac{d\theta}{2\pi}+d\mu_{1,s},$ then

$$1 - |\alpha_0|^2 = \exp\left(\frac{1}{2\pi} \int \log\left(\frac{f(\theta)}{f_1(\theta)}\right) d\theta\right)$$

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow Result$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

This is a little dicey if f_1 or f vanish on sets of positive Lebesgue measure but otherwise makes sense even if μ doesn't obey a Szegő condition.

There is such a "single step" sum rule in general where $\log\left(\frac{f(\theta)}{f_1(\theta)}\right)$ is replaced by a function $G(\theta)$ equal to that log if $f(\theta) \neq 0$ and it can be used to prove Szegő's theorem (see [SzThm], Sections 2.6 and 2.7).

Since the proof uses usc of entropy, it only replaces variational upper bound so for OPUC not so significant.

Still it leads to a higher-order Szegő theorem for OPUC (see [SzThm], Section 2.8).

We'll eventually prove

Theorem (P_2 Step-by-Step Sum Rule). μ_ℓ has Jacobi parameters $a_j(\mu_\ell) = a_{j+\ell}(\mu)$, $b_j(\mu_\ell) = b_{j+\ell}(\mu)$. Then, (a) $\sum_{j,\pm} \left[F(E_j^{\pm}(\mu)) - F(E_j^{\pm}(\mu_1)) \right]$ is convergent.

(b)
$$\exists Q(\mu \mid \mu_1)$$
 finite for all μ .

(c) $Q(\mu) < \infty \Leftrightarrow Q(\mu_1) < \infty$ and in that case $Q(\mu \mid \mu_1) = Q(\mu) - Q(\mu_1).$

$$\frac{1}{4}b_1^2 + G(a_1) = Q(\mu \mid \mu_1) + \sum_{j,\pm} F(E_j^{\pm}(\mu)) - F(E_j^{\pm}(\mu_1))$$

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow Result$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $\begin{array}{l} \mathsf{Step-by-Step} \Rightarrow \\ \mathsf{Result} \end{array}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

Step 1. P_2 for finite rank perturbations

If $J - J_0$ has rank n, then $\mu_n = \mu_0$ has $Q(\mu_0) = 0 < \infty$. Thus $Q(\mu) < \infty$. Similarly, the sum of F's is finite.

By iteration, we get
$$P_2$$
 for $\mu_{n-1}, \mu_{n-2}, \ldots, \mu$.

Step-by-Step Sum Rule \Rightarrow Sum Rule

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $\begin{array}{l} \mathsf{Step-by-Step} \Rightarrow \\ \mathsf{Result} \end{array}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story

Step 2. Let
$$J^{(n)}$$
 have
 $a_{\ell}^{(n)} = a_{\ell}, \ \ell \le n - 1, \ a_{\ell}^{(n)} = 1 \text{ if } \ell \ge n,$
 $b_{\ell}^{(n)} = b_{\ell}, \ \ell \le n, \ b_{\ell}^{(n)} = 0 \text{ if } \ell \ge n + 1,$
Let $\mathcal{E}(\mu) = \sum F'$ s.

By Step 1,
$$Q(\mu^{(n)}) + \mathcal{E}(\mu^{(n)}) = \frac{1}{4} \sum_{j=1}^{n} b_j^2 + \sum_{j=1}^{n-1} G(a_j)$$

Since
$$Q = -S$$
, Q is lsc so $Q(\mu) \leq \underline{\lim} Q(\mu^{(n)})$.
For j fixed, $E_j^{\pm}(\mu^{(n)}) \rightarrow E_j^{\pm}(\mu)$, so $\sum_{j,\pm \leq m} F(E_j^{\pm}(\mu))$
 $\leq \underline{\lim} \mathcal{E}(\mu^{(n)})$, so $\mathcal{E}(\mu) \leq \underline{\lim} \mathcal{E}(\mu^{(n)})$.

We have thus proven that $Q(\mu) + \mathcal{E}(\mu) \leq \sum_{j=1}^\infty \frac{1}{4} b_j^2 + G(a_j).$

Step-by-Step Sum Rule \Rightarrow Sum Rule

 P_2 -Sum Rule

Step-by-Ste Sum Rules

$\begin{array}{l} {\sf Step-by-Step} \Rightarrow \\ {\sf Result} \end{array}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story

Step 3. If
$$Q(\mu) < \infty$$
, $\mathcal{E}(\mu) < \infty$, by step-by-step, $Q(\mu_n) < \infty$, $\mathcal{E}(\mu) < \infty$ and

$$Q(\mu) + \mathcal{E}(\mu) = \sum_{j=1}^{n-1} \left[\frac{1}{4}b_j^2 + G(a_j)\right] + Q(\mu_n) + \mathcal{E}(\mu_n)$$

$$\geq \sum_{j=1}^{n-1} \frac{1}{4} b_j^2 + G(a_j)$$

Taking $n \to \infty$, $Q(\mu) + \mathcal{E}(\mu) \ge \sum_{j=1}^{\infty} \frac{1}{4} b_j^2 + G(a_j)$ If $Q = \infty$ or $\mathcal{E} = \infty$, this inequality is trivial. QED!

m-**Functions**

Killip–Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 ${f Step-by-Step} \Rightarrow {f Result}$

$m ext{-}\mathsf{Functions}$

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

One defines $m_{\mu}(z) = \int \frac{d\mu(x)}{x-z}$ for $z \notin \operatorname{supp}(\mu) = \sigma(J)$. Of course, m is analytic on $\mathbb{C} \setminus \sigma(J)$ and meromorphic at isolated pure points of μ .

Moreover, since J is multiplication by x in $L^2(\mathbb{R}, d\mu)$, isolated eigenvalues of J are exactly the poles of m_{μ} .

We'll see soon that the poles of m_{μ_1} , the once-stripped m are precisely the zeros of m_{μ} .

m-Functions

I

m-Functions

If
$$(\alpha, \beta) \subset \mathbb{R} \setminus \sigma(J)$$
, $\frac{dm(y)}{dy} = \int \frac{d\mu(x)}{(x-y)^2} > 0$ so
zeros and poles of m interlace. Since $m \to 0$ at $\pm \infty$, last
"pole or zero" is a pole.
Thus, $E_1^+(\mu) > E_1^+(\mu_1) > E_2^+(\mu) > E_2^+(\mu_1) \dots$
 \Rightarrow terms in $F(E(\mu)) - F(E(\mu_1))$ are all positive
and as alternating sum, the sum converges.
Also for Lebesgue a.e. x , $f(x) = \pi^{-1} \lim_{\varepsilon \downarrow 0} \operatorname{Im} m(x + i\varepsilon)$

Second Kind Polynomials

Killip–Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphi Herglotz Functions

Case Sum Rules

End of the Story

$$q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} \, d\mu(y); \quad q_0 = 0, \, q_{-1} = -1$$

Since
$$p_1(x) = a_1^{-1}(x-b_1)$$
, we have $q_1 = a_1^{-1}$.

Using recursion relation for p's, see q obeys same relations. Indeed,

$$q_n(x) = a_1^{-1} p_{n-1} \left(x; \{ a_{\ell+1}, b_{\ell+1} \}_{\ell=0}^{\infty} \right)$$

are "essentially" the p's for $d\mu_1$.

Weyl Solution

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 ${f Step-by-Step} \Rightarrow {f Result}$

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphi Herglotz Functions

Case Sum Rules End of the Story For $z \notin \sigma(J)$, define the Weyl solution $g_n(z) \equiv m(z) p_n(z) + q_n(z)$

which is a solution of difference equation. Thus,

$$g_n(z) = p_n(z) \int \frac{d\mu(x)}{x - z} - p_n(z) \int \frac{d\mu(x)}{x - z} + \int \frac{p_n(x)}{x - z} d\mu(x)$$

$$= \langle p_n, (\cdot - z)^{-1} \rangle$$

Since $(\cdot - z)^{-1} \in L^2(\mathbb{R}, d\mu)$, we see
$$\sum_{n=0}^{\infty} |g_n(z)|^2 < \infty \quad \left(= \frac{\operatorname{Im} m(z)}{\operatorname{Im} z} \text{ if } \operatorname{Im} z \neq 0 \right)$$

If $\inf_n a_n > 0$, the Weyl solution is the unique L^2 solution (up to a constant) by constancy of the Wronskian.

Weyl Solution

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow Result$

m- Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story Clearly $m(z) = -\frac{g_0(z)}{a_0 g_{-1}(z)}$ since $q_0 = 0$, $p_0 = 1$, $q_{-1} = -1$, $p_{-1} = 0$, $a_0 = 1$. By uniqueness of L^2 solutions up to a constant $g_n(z; d\mu_1) = c(z) g_{n+1}(z; d\mu)$, $n \ge -1$. Thus, $m(z; d\mu_1) = \frac{-g_1(z)}{a_1 g_0(z)}$. ln $m(z) = -g_0/a_0 g_{-1}$, we put $a_0 = 1$, but it works for any

value of a_0 which is why we put in the $a_1.$

Since $a_1 g_1 + (b_1 - z)g_0 + a_0 g_{-1} = 0$, we see that $-a_1^2 m_1 + (b_1 - z) - m(z)^{-1} = 0.$

Weyl Solution

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphi Herglotz Functions

Case Sum Rules

Thus, $m(z) = (b_1 - z - a_1^2 m_1(z))^{-1}$, called the coefficient stripping relation.

In particular, poles of m_1 are exactly the zeros of m as we claimed.

Iterating gives Markov continued fraction expansion for m ! In particular taking $z=x+i\varepsilon,\ \varepsilon\downarrow 0$ using ${\rm Im}(w^{-1})=-{\rm Im}\,w/|w|^2,$

 $\varepsilon + a_1^2 \operatorname{Im} m_1 = \operatorname{Im} m/|m|^2 \Rightarrow f/f_1 = |a_1m|^2$

Meromorphic Herglotz Functions on $\ensuremath{\mathbb{D}}$

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules End of the Story Let M be meromotphic on \mathbb{D} with $\pm \operatorname{Im} M > 0$ if $\pm \operatorname{Im} z > 0$. Then poles and zeros (i.e., on (-1, 1)) interlace. By controlling the ratio of Blaschke products as zeros move, one proves that

Theorem. If $\{z_j\}_{j=1}^{\infty}$, $\{p_j\}_{j=1}^{\infty} \subset (-1, 1)$ with $|z_j| \to 1$ as $j \to \infty$ and $\sum_{j=1}^{\infty} |z_j - p_j| < \infty$ (automatic if interlaced), then

$$\prod_{j=1}^{N} \frac{b_{z_j}(z)}{b_{p_j}(z)} \to B(z)$$

as meromorphic functions on $\mathbb D$ "uniformly" (as functions to Riemann sphere).

B converges in UHP uniformly on compacts, so $|B(e^{i\theta})|=1.$

As usual
$$b_{w=0}(z)=z$$
, $b_{w
eq 0}(z)=-rac{|w|}{w}rac{z-w}{1-ar w z}$

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

Let B_{∞} be Blaschke product of zeros and poles for M, a meromorphic Herglotz function on \mathbb{D} . One proves in UHP, $|\arg B_{\infty}(z)| \leq 2\pi$ (starting from $\arg B_{\infty}(x) = 0$ for $B_{\infty}(x) > 0$ on \mathbb{R}) so $\arg(M/B_{\infty})$ is bounded, so by M. Riesz Theorem,

 $\log\left(M/B_{\infty}\right) \subset \cap_{p < \infty} H^p$

Meromorphic Herglotz Functions on $\ensuremath{\mathbb{D}}$

We get

Theorem. If M is a meromorphic Herglotz function on \mathbb{D} , B_{∞} meromorphic on \mathbb{D} , poles only at poles of M. Then for a.e. θ , $\lim_{r\uparrow 1} M(re^{i\theta}) \equiv M(e^{i\theta})$ exists with

$$\int \left[\log |M(e^{i\theta})| \right]^p \frac{d\theta}{2\pi} < \infty$$

for all $p \in [1,\infty)$

with

$$f(z) = \sigma B_{\infty}(z) \exp\left(\int \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|M(e^{i\theta})| \frac{d\theta}{2\pi}\right)$$

Rules where σ Story $\sigma = \operatorname{sgn}$

where $\sigma = \pm 1$. $\sigma = \operatorname{sgn}(f(0)) \text{ if } f(0) \neq 0, \ \sigma = 1 \text{ if } f(0) = 0, \ \sigma = -1 \text{ if } f(0) = \infty.$

Killip–Simon Theorem

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglot z Functions

Step-by-Step Case Sum Rules

(named after Ken Case) We now apply this to

$$M(z) = m(z + z^{-1})$$

looking at $\log\left(\frac{a_1M(z)}{z}\right)$. z = 0 corresponds to $x = \infty$, so there are Taylor coefficients expressible in terms of continued function expansion. The leading terms are

$$\log \frac{a_1 M(z)}{z} = \log a_1 + b_1 z + (\frac{1}{2}b_1^2 + a_1^2 - 1)z^2 + O(z^3)$$

Using
$$\log \left(1 - \frac{\beta}{z + z^{-1}} \right) = \sum_{n=1}^{\infty} \frac{2}{n} \left[T_n(0) - T_n(\frac{1}{2}\beta) \right] z^n$$

one can obtain "explicit" formulas for the Taylor coefficients.

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphi Herglotz Functions

Case Sum Rules

 P_2 -Sum Rule

Step-by-Ste Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

End of the Story

One also expands the log of Blaschke terms, using $\log b_w(z) = \log |w| + \sum_{n=1}^{\infty} \frac{z^n}{n} (w^n - w^{-n})$ and $\frac{e^{i\theta} + z}{e^{i\theta - z}} = 1 + 2 \sum_{n=1}^{\infty} z^n e^{-in\theta}$. One gets the C_0 step-by-step rule

 $-\log(a_1) = Z(J \mid J_1) + \sum_{j,\pm} \left[\log(|p_j|) - \log(|z_j|) \right]$

$$Z(J \mid J_1) = \frac{1}{4\pi} \int_0^{2\pi} \log\left(\frac{\operatorname{Im} M_1(e^{i\theta})}{\operatorname{Im} M(e^{i\theta})}\right) d\theta$$

if $\operatorname{Im} M(e^{i\theta}) \neq 0$, otherwise it's really $|a_1 M(e^{i\theta})|^2$.

Step-by-Step Case Sum Rules

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphic Herglotz Functions

Case Sum Rules

For $n \geq 1$, C_n sum rules, $\mathcal{P}_n(a's, b's) = S_n + \mathcal{E}_n$ \mathcal{P}_n is, in general, complicated but $\mathcal{P}_2 = \frac{1}{2}b_1^2 + a_1^2 - 1, \quad \mathcal{P}_1 = b_1$ $\mathcal{E}_{n} = \sum_{j,\pm 1} \frac{z_{j}^{n} - p_{j}^{n} - (z_{j}^{-n} - p_{j}^{-n})}{n}$ $S_n = -\frac{1}{2\pi} \int_0^{2\pi} \log\left(\frac{\operatorname{Im} M_1(e^{i\theta})}{\operatorname{Im} M(e^{i\theta})}\right) \, \cos(n\theta) \, d\theta$

where we use ${\rm Im}\,M(e^{i\theta})=-\,{\rm Im}\,M(e^{i\theta})$ so ratio is even to replace $e^{in\theta}$ by $\cos(n\theta).$

The End of the Story

Killip-Simon Theorem

 P_2 -Sum Rule

Step-by-Step Sum Rules

 $Step-by-Step \Rightarrow$ Result

m-Functions

Second Kind Polynomials

Weyl Solution

Meromorphi Herglotz Functions

Case Sum Rules

End of the Story

 \mathcal{P}_2 is $C_0 + \frac{1}{2}C_2$. A miracle takes place! $\frac{1}{4\pi} - \frac{1}{4\pi}\cos(2\theta) = \frac{1}{2\pi}\sin^2\theta$, so the entropies terms combine to

$$\begin{split} Q(J \mid J_1) &= \frac{1}{2\pi} \int_0^{2\pi} \log\left(\frac{\operatorname{Im} M_1}{\operatorname{Im} M}\right) \sin^2 \theta \, d\theta \\ &- \log(a_1) + \frac{1}{2} \left(\frac{1}{2} b_1^2 + a_1^2 - 1\right) = \frac{1}{4} \, b_1^2 + \frac{1}{2} \, G(a_1) \\ \text{with } G(a) > 0 \text{ on } (0, \infty) \setminus \{1\}. \end{split}$$

The Blaschke terms also combine to something positive.

Everything works because of the positivity. So far, there is no understanding why they are positive other than as a fortuitous result of calculation!