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Overview

We've seen that whole line periodic Jacobi matrices lead to
band spectrum, ∪`+1

j=1[αj , βj ]. Here ` will indicate the
number of gaps and, at least at the start, we suppose all
gaps are open. Recall that the spectrum is determined by
the discriminant, ∆J , via σ(J) = ∆−1

(
[−2, 2]

)
.

Conversely, as we saw, ∆J is determined by σ(J) so

σ(J) = σ(J ′)⇔ ∆J = ∆J ′

In this section, we'll explore when two J 's have the same
spectrum, not only in the periodic case but for general �nite
gap sets. We'll see this �isospectral manifold� is an
`-dimensional torus.



Overview

Quadratic
Irrationalities

Riemann Surface
of m(z)

Poles of m(z)

Periodic
Isospectral Torus

General Finite
Gap Set

Quadratic Irrationalities

In the latter half of the 18th century, Euler and Legendre
discovered that a numeric canonical continued fraction has
periodic coe�cients if and only if its value x obeyed a
quadratic equation. We know that Jacobi parameters are
coe�cients in the continued fraction expansion of a half-line
m function. Thus, we expect periodic Jacobi parameters
should be connected to m-functions obeying a quadratic
equation.
In the periodic case, we have

[Note: −apup−1( m
−1 ) = ( u1

apu0 ) with u = Weyl solution]

Tp(z)

(
m
−1

)
= c

(
m
−1

)
, Tp(z) =

(
pp −qp

appp−1 −apqp−1

)
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Quadratic Irrationalities

Thus:

m = − mpp + qp
ap(mpp−1 + qp−1)

α(z)m(z)2 + β(z)m(z) + γ(z) = 0

α(z) = appp−1(z), β(z) = pp(z) + apqp−1(z),

γ(z) = qp(z).

β2 − 4αγ = (pp − apqp−1)2 − 4[ap(qppp−1 − ppqp−1)]

= ∆2 − 4 where ∆ = pp − aqp−1

is our old friend, the discriminant (bad name!).
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Riemann Surface of m(z)

Thus m(z) =
−β(z)±

√
∆2 − 4

2α(z)
; deg ∆ = p, degα =

p− 1, deg β = p.

If all gaps are open, ∆2 − 4 has a square root singularity
exactly at {αj , βj}pj=1, i.e., edges of bands. The natural
branch cuts are the bands ∪[αj , βj ].

m(z) is meromorphic (i.e., analytic from S to C ∪ {∞}) on
S = S+ ∪ S−, two copies of C∪ {∞} ∪pj=1 [αj , βj) glued at
the bands.

π : S → C ∪ {∞} maps a point in S to underlying C.

The genus of S is `; it is a sphere with ` handles.
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Riemann Surface of m(z)

The Riemann surface can be realized as the set of points
(z, w) in C2 with (π((z, w)) = z)

S(z, w) = w2 −
(
∆(z)2 − 4

)
= 0

∇S = (2w, 2∆(z)∆′(z))

Since no gaps are closed, if w = 0, ∆(z) 6= 0 6= ∆′(z), so S
is a complex manifold. At points with w 6= 0, ∂S∂w 6= 0 and
so w can be written as a function of z, i.e., z is a local
coordinate.
When w = 0, i.e., ∆ = ±2, ∂S∂z 6= 0 and z can be written as

a function of w = (z − z0)1/2 +O
(
(z − z0)

)
. That is at

branch points, Riemann surface coordinates are (z − z0)1/2.
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Poles of m(z)

Near ∞+,
√

∆2 − 4 = ∆
(√

1− 4∆−2
)

= ∆ +O( 1
∆).

−β +
√

∆− 42 ∼ −(pp + apqp−1) + (pp − apqp−1) =
2apqp−1 = O(zp−2), while α(z) = 2appp−1(z) = O(zp−1).

Thus, near ∞+, m(z)→ 0 as z−1 (as it must, as an
m-function).

Near ∞−,
√

∆2 − 4 has opposite sign and numerator is
∼ −2β = O(zp) , so m(z) has a simple pole at ∞−.

All other possible poles are at zeros of α.
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Poles of m(z)

As we saw, near ∞, m(z) = O(1/z) because√
∆2 − 4 ∼ ∆ = (a1 · · · ap)−1zp +O(zp−1), so

√
∆2 − 4 is

positive on (βp,∞).

∆2 − 4 has a simple zero at βp, so arg
(√

∆2 − 4
)

= π
2 on

(αp, βp) consistent with Imm ≥ 0 there so long as α has
no zeros in (αp,∞) (since α(x) > 0 near +∞ on R).

Since there are simple zeros of ∆2 − 4 at αp and βp−1,
arg
(√

∆2 − 4
)

= π on (βp−1, αp) and arg
(√

∆2 − 4
)

= 3π
2 .

For Imm ≥ 0 on (αp−1, βp−1), α must be negative there,
i.e., α has an odd number of zeros in [βp−1, αp].
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Poles of m(z)

We thus see α(z) has at least one zero in each gap but
degα = p− 1 and there are p− 1 gaps. We have thus
proven

Theorem. α has exactly one zero in the closure of each

gap and no other zeros.
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Poles of m(z)

When α = 0, ∆2 − 4 = β2 − 4αγ = β2, so numerator is
−β ± β (or −β ±

β), so if α(x0) = 0 and x0 ∈ (βj−1, αj)
then β2 = ∆2 − 4 6= 0 and we get a pole at exactly one
point with π(z) = x0.

If x0 ∈ {βp−1, αj}, then α = O(x− x0) while

−β(x) +
√

∆2 − 4 is O
(
(x− x0)

)1/2
, so m ∼ (z − z0)−1/2.

Since (z − z0)1/2 is local coordinate at the branch point,
still a simple pole.

Theorem. Suppose all gaps are open. On S, m(z) has
exactly p poles, all simple; one at ∞− and exactly one in
each π−1

(
[βj−1, αj ]

)
, j = 2, . . . , p.
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Periodic Isospectral Torus

Each π−1
(
[βj , αj ]

)
is two copies of (βj−1, αj) glued at

ends, i.e. a circle.

The set of possible poles of m is (∂D)`, i.e., a torus.

We claim the map of m 7→ poles is a bijection of the
isospectral manifold and an `-dimensional torus.

Let's try to construct an m given a set of possible poles.
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Periodic Isospectral Torus

For let R =
∏p
j=1(z − αj)(z − βj). We want to try

m(z) =
−B(z) +

√
R(z)

A(z)

with degB = p, degA = p− 1.

Near ∞+,
√
R has a Taylor expansion zp + Czp−1 + . . .

For −B(z) +
√
R(z) to be O(zp−2) at ∞+, we know

B(z) = zp + Czp−1 + . . . .

Let
√
R(pj) be the value of

√
R at the poles pj with

π(pj) ∈ [αj , βj+1]. We need B
(
π(pj)

)
= −

√
R(pj). This

gives p− 1 additional pieces of data and determines B.
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Periodic Isospectral Torus

A(z) = C
∏p−1
j=1

(
z − π(pj)

)
. C is determined by

m(z) = −z−1 +O(z−2) near ∞+.

By the analysis of arg(
√
R) as above, m constructed this

way has Imm(x+ i0) > 0 on each [αj , βj ] in S+. Poles
and residues which are in S+ determine point mass of dµ.
Thus, we get measure µ and so isospectral m-function with
that pole data.
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Periodic Isospectral Torus

One needs a little more analysis to con�rm that m has
periodic Jacobi parameters. The result is

Theorem.The map of half-line J 's of period p with a given

∆ is mapped bijectively to (∂D)p−1 by taking J 7→ m 7→
poles in S.

If a gap is closed, the torus shrinks to one lower dimension.
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General Finite Gap Set

The above analysis works for any �nite gap set that is given

α1 < β1 < α2 < . . . < α`+1 < β` in R

one can form R =
∏`+1
j=1(z − αj)(z − βj)

and the Riemann surface of
√
R formed by gluing S+ and

S− together

to get S with points at ∞.
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General Finite Gap Set

S has genus ` and π : S → C ∪ {∞}. We also de�ne
τ : S → S which takes any z ∈ S+ to the unique τ(z) in
S− with π(z) = π

(
τ(z)

)
.

Meromorphic functions are �analytic� maps
f : S → C ∪ {∞}, the Riemann sphere.

By the general theory, any such f has a degree, d, i.e., a
number so that for any w ∈ C∪ {∞}, f(z)−w has d roots
counting multiplicity.
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General Finite Gap Set

S is hyperelliptic�namely there exists functions of degree
2�any function of the form f

(
π(z)

)
where f is an analytic

bijection of C ∪ {∞} to itself.

Such functions obey f
(
τ(z)

)
= f(z). If that fails, we say

that f is not square-root free.

The minimal degree of not square-root free functions is
`+ 1 (e.g.,

√
R).
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General Finite Gap Set

As an analysis like the periodic case shows, there is a
one-one correspondence between minimal degree functions
m(z) with Imm(z) > 0 if z ∈ S+ ∩ C+ with
m(z) = −z−1 +O(z−2) at ∞+ and with poles at ∞− and
on R ∩ S (�minimal Herglotz functions�) and the
`-dimensional torus of

`
×
j=1

π−1
(
[βj , αj+1]

)
given by taking m to its poles other than ∞−.
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General Finite Gap Set

Moreover, the corresponding half-line Jacobi parameters are
almost periodic with frequency module the harmonic
measures of the bands.

We'll see parts of where this comes from in the next two
lectures. For full details, see Section 5.13 of [SzThm] or the
original paper of Christiansen, Simon, Zinchenko [Constr.
Approx. 32 (2010), 1�65].

One can also describe this isospectral torus in terms of
re�ectionless whole-line Jacobi matrices, which I hope to
discuss in the �nal lectures.
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