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Brief history
Kodaira-Spencer [1958] : modern approach in analytic category.
Grothendieck’s idea: Scheme theory is ideally suited for
deformations and moduli in algebraic category.
FGA [1960]: Descent. Formal schemes and existence theorem.
Projective methods. Hilbert schemes. Picard schemes.
Mumford’s GIT [1965]. Projective quotients. Moduli for stable
objects.
Schlessinger [1965]: Functors on Artin Rings.
Illusie [1968] Cotangent complex and application to lifting
problems.
Mumford [1964] : Moduli stack for elliptic curves.
Deligne-Mumford stacks [1969].
Artin [1968] : Approximation theorem. Étale gluing. Algebraic
spaces.
Artin [1974] : Introduction of algebraic stacks. Use of deformation
theory to make moduli as algebraic stacks.
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From deformations to Moduli: Overview - (i)

What is a deformation? ‘to prolong’ or ‘to extend’ (speaking
geometrically), or ‘to lift’ (speaking algebraically). This is the
opposite of taking limits or specializations or reductions.
We begin with a kind of objects. e.g. Varieties, line bundles on a
variety, hypersurfaces in a given space, etc. Let E be such an
object.
Parameter space : a pointed space (T , t0) where
T is a scheme and t0 is a (locally) closed point of T .
A deformation of E parameterized by (T , t0) is a family ET of
similar objects, together with an isomorphism E ∼→ Et0 .
Note: A family ET is more than just an indexed collection (Et )t∈T .
The objects are held together in a ‘continuous’ manner.
Flatness is the algebraic notion of importance here.
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Overview - (ii). Infinitesimal theory.

Lifting to a square-zero thickening is the fundamental step in
generating infinitesimal lifts. Iteration gives higher order lifts.
Infinitesimal deformation : parameterized by T = Spec A,
where A is an Artin local ring and t0 ∈ Spec A is its closed point.
A tangent-obstruction theory is about lifting a family from A to A′

where A′ → A is a quotient ring with nilpotent kernel.
|Spec A| ⊂ |Spec A′| is actually an equality.
Cotangent complexes give tangent-obstruction theories.
Schlessinger theorem Under suitable hypothesis, a limit over
larger and larger infinitesimal deformations can give a
versal pro-deformation (En) parameterized by Spec R for a
complete local ring R = lim R/mn+1.

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 4 / 79



Overview - (iii). Algebraization and moduli stacks.

A pro-deformation (En) over a complete local ring R = lim R/mn+1

in good cases gives a deformation E over R by the Grothendieck
existence theorem.
The deformation over R can by Artin’s approx. theorem be
approximated by a deformation over an algebraic ring R′. By
openness of versality we get a nbd UE ⊂ Spec R′ on which the
deformation of E is versal.
By starting with all possible E , the resulting parameter spaces UE
of versal algebraic deformations can be glued together in étale
topology to get an algebraic space as moduli. Works best when
automorphisms are trivial.
Algebraic stacks are a generalization of spaces which encodes
automorphisms.
Artin’s theorem [1974]: Moduli is an algebraic stack under
suitable (necessary and sufficient) hypothesis.

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 5 / 79



Moduli problems as functors -(i)

This is the view of moduli problems originating in Grothendieck [FGA].

Let S be a noetherian, quasi-separated base scheme (for
example, S = Spec C or Spec Z).
Category Aff/S of affine schemes over S :
Objects U → S where U is affine.
Morphisms are S-morphisms of schemes.
Opposite category: Rings/S.
Objects: A/S = (A,Spec A→ S).
Morphisms: ring homomorphisms over S.
Specially noteworthy objects of Aff/S are the points over S:
these are morphisms s : Spec k → S where k is a field.
A moduli problem over S is given by a functor
Φ : (Aff/S)op → Sets, or equivalently, a functor
Φ : Rings/S → Sets.
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Moduli problems as functors -(ii)
The objects of interest to the moduli problem are elements
E ∈ Φ(k) for various s : Spec k → S where k is a field. We say that
such an E is defined over s : Spec k → S.
For T/S, an element F ∈ Φ(T ) is called as a family
parameterized by T .
The best desired solution to the moduli problem is a pair (M,P)
consisting of a scheme (or an algebraic space) M/S together with
a natural isomorphism P : hM → Φ, where
hM = HomS(−,M) : Aff/S → Sets is the functor ‘represented’ by
M. (Note that M need not be affine.)
Such an M is called the moduli space. Usually (M,P) is written
simply as M.
‘Yoneda’: M → S can be recovered uniquely
up to a unique isomorphism from the functor hM . (This is stronger
than the usual Yoneda lemma of category theory as M need not
be affine).
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Moduli problems as functors -(iii)
Grothendieck proved that for any scheme M/S, the functor
hM : (Aff/S)opp → Sets satisfies fpqc descent.
An fpqc cover (or an étale cover or a Zariski cover) of an object
U in Aff/S is a finite collection of morphisms (Ui → U)i∈I in Aff/S
such that each Ui → U is flat (or étale or an open immersion) and
U is the union of their images.
A functor Φ : (Aff/S)op → Sets satisfies fpqc descent (or étale
descent or Zariski descent) if for each fpqc cover (or étale cover or
Zariski cover) (Ui → U)i∈I in Aff/U, the following diagram is exact.

Φ(U)→
∏

i

Φ(Ui)
→→

∏
j,k

Φ(Uj ×U Uk )

where the two maps on the right are induced by the two
projections.
Such a Φ is a sheaf of sets in fpqc or étale or Zariski topology.
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Moduli problems as functors -(iv)

If Φ : (Aff/S)opp → Sets is a sheaf in fpqc topology, then there is a
uniquely unique extension of Φ to a functor
Φ′ : (Sch/S)opp → Sets which is again a fpqc sheaf (suitably
defined), where Sch/S is the category of all schemes over S, with
Aff/S as a full subcategory.
Notation: we will denote Φ′ simply by Φ.
If Φ : (Aff/S)opp → Sets is not already a sheaf in étale topology or
fppf topology, then we replace it by its étale or fppf sheafification
Φsh : (Aff/S)opp → Sets, which in good examples is also an fpqc
sheaf.
(Comment on difficulty in fpqc sheafification, and its solution via
universes.)
For existence of a moduli, it is necessary but not sufficient that Φ
is an fpqc sheaf. Example: S = Spec Z,
Φ : Rings → Sets : R 7→ R/2R.
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Parameter spaces as moduli: Examples -(i)
In many moduli problems of interest, Φ(U) is the set of
isomorphism classes of geometric objects parameterized by U.
These geometric objects often have nontrivial automorphisms.
However in some examples, the only automorphisms of the
geometric objects are trivial. In such cases, the moduli space is
commonly called as the ‘parameter space’.
Functor Φ : Rings → Sets : R 7→ SL2(R).
A parameter space exists: SL2,Z = Spec Z[a,b, c,d ]/(ad − bc− 1).
Φ : Rings → Sets defined by Φ(R) = the set of all rank 1
projective direct summand submodules L ⊂ Rn (for a fixed n).
The parameter space is Pn

Z (projective n-space over Spec Z).
Φ(R) = the set of all closed subschemes X ⊂ Pn

R such that X is
flat over R.
The parameter space is called the Hilbert scheme. Existence
proved by Grothendieck in [FGA].
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Parameter spaces as moduli: Examples -(ii)
Φ(R) = the set of all equivalence classes of coherent quotients
q : Om

Pn
R
→ F such that F is flat over R, where m and n are fixed

integers. (Two quotients q1 : Om
Pn

R
→ F1 and q2 : Om

Pn
R
→ F2 are

equivalent if there exists isom φ : F1
∼→ F2 such that q2 = φ ◦ q1.)

The parameter space is called the Quot scheme. Existence
proved by Grothendieck in [FGA].
The Hilbert scheme is the special case of the Quot scheme when
m = 1. The existence proof of Hilbert and Quot schemes is
heavily dependent on techniques of projective geometry.
Let V → S be a proper morphism, and let E be a coherent
OV -module. For any R/S, let Φ(R) be the set of all equivalence
classes of coherent quotients q : E ⊗S R → F on XR. This functor
clearly satisfies fpqc descent.
A parameter space (called Quot space) exists according to Artin
(1968), however, we may to go beyond the cadre of schemes:
the Quot space (and the ‘Hilbert space’) is an algebraic space.
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What if there are nontrivial automorphisms -(i)
If a geometric object has a non-trivial automorphism, it may be
possible to have a family of such objects which locally trivial but
globally nontrivial.
For example, a vector space of dimension n ≥ 1 has non-trivial
automorphisms. Consequently, locally trivial but globally
non-trivial vector bundles exist.
Let Φ : Aff/S → Sets associate to any U the set of all
isomorphism classes of rank n vector bundles on U. Then Φ is not
a sheaf in Zariski topology. For, if E is a non-trivial vector bundle
on U, then on some open cover (Ui)i∈I it is trivial, so the map

Φ(U)→
∏
i∈I

Φ(Ui)

is not injective.
Sheafification of Φ produces the constant singleton sheaf – which
is represented by S. But all information about the vector bundles
(including the rank) is lost by the moduli S.
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What if there are nontrivial automorphisms -(ii)
However, there are many moduli problems which can be suitably
restricted or rigidified so that all is not lost on sheafification.
Example The moduli of line bundles on fibers of X/S (a proper
flat morphism): when X/S is flat and projective with geometrically
integral fibers, Grothendieck constructed the relative Picard
scheme PicX/S in [FGA].
When X/S is flat, proper, and cohomologically flat in dimension 0,
this was done by Artin (1968) by letting PicX/S be an algebraic
space.
Example (Mumford): X = V (x2 + y2 + tz2) ⊂ P2

R[[t]] over
S = Spec R[[t ]].
Example The moduli of stable vector bundles on a curve –
Mumford 1962 (early success of GIT methods).
Example The moduli of pointed stable curves (another success
of GIT methods).
In all these examples, note that the automorphisms are ‘uniform’.
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Moduli problems as S-groupoids -(i)
Mumford found a truly dramatic way out by re-imagining how a
moduli problem is to be posed, and what is its solution, when the
objects to be classified admit non-trivial automorphisms:
[Mumford 1963] Picard groups of moduli problems.
A moduli problem over S is given by a category X and a functor
X→ Aff/S, which makes X a groupoid over Aff/S (called as a
‘groupoid over S’ or an ‘S-groupoid’ for simplicity).
A groupoid (X,a) over S is by definition a category X together
with a functor a : X→ Aff/S which satisfies (1) and (2) below.
(1) For each S-morphism φ : U → V and object F in X, there
exists an object E in X and a morphism f : E → F in X such that
a(f ) = φ.

(2) Given U
φ→ V

ψ→W in Aff/S, objects E , F , G in X respectively
over U, V , W , and arrows h : E → G over ψ ◦ φ and g : F → G
over ψ, there exists a unique arrow f : E → F in X over φ such
that g ◦ f = h.

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 14 / 79



Moduli problems as S-groupoids -(ii)
Let X be an S groupoid (the notation for the functor a : X→ Aff/S is
usually left out for simplicity).

Categorical fiber XU over U in Aff/S:
Objects in XU : all objects of X which map to U.
Morphisms in XU :
all morphisms in X which map to idU .
If U = Spec A for an S-ring A/S, we may denote XU by XA.
It follows that each XU is a groupoid in the sense of being a
category in which all morphisms are isomorphisms.
For each S-morphism φ : U → V , we can choose a pullback
functor φ∗ : XV → XU , and a system of natural isomorphisms
ψ∗φ∗

∼→ (φψ)∗ which makes U 7→ XU a pseudo-functor from Aff/S
to the category of all groupoids. For notational simplicity, we will
usually pretend that ψ∗φ∗ = (φψ)∗.
The data consisting of pullbacks φ∗ and isomorphisms
ψ∗φ∗

∼→ (φψ)∗ is called a cleavage for a groupoid.
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Big etale sheaf, or etale descent

An etale open cover of an object U in Aff/S is a finite collection
of morphisms (Ui → U)i∈I in Aff/S such that each Ui → U is étale
and U is the union of their images.
A functor F : (Aff/S)op → Sets is called a big étale sheaf on S if
for each étale open cover (Ui → U)i∈I in Aff/U, the following
diagram is exact.

F(U)→
∏

i

F(Ui)
→→

∏
j,k

F(Uj ×U Uk )

where the two maps on the right are induced by the two
projections.
An S-groupoid X is a pre-stack if given any U in Aff/S and E ,F
in XU , the functor Aff/U → Sets : V 7→ HomXV (E ,F ) is a big étale
sheaf on Aff/U (satisfies étale descent).
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Effective etale descent

An S-groupoid is said to satisfy effective étale descent if for each
étale open cover (Ui → U)i∈I in Aff/U, we have the following:
Given any indexed collection of objects Ei in XUi and
isomorphisms gij : Ej |Uij → Ei |Uij with gijgjk = gik on Uijk , there
exists E in F(U) and isomorphisms fi : E |Ui → Ei such that
gij = fi ◦ f−1

j on Uij (notation: Uij = Ui ×U Uj and the restrictions
are the pullbacks under the two projections) which satisfy the
cocyle condition gijgjk = gik on Uijk , there exists E in F(U) and
isomorphisms fi : E |Ui → Ei such that gij = fi ◦ f−1

j on Uij .
An S-stack is an S-prestack which satisfies effective étale
descent.
Any S-groupoid X admits a functorial stackification, which is left
adjoint to the inclusion of the category of all S-stacks into the
category of all S-groupoids.

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 17 / 79



Algebraic stacks over S

Recall that an S-stack X is said to be algebraic if (i) the diagonal
X→ X×S X is representable, separated and quasicompact, and
(ii) there exists an algebraic space X over S and a S-morphism
P : X → X which is surjective and smooth.
A moduli problem is solved if the S-groupoid X is an algebraic
stack over S.
If our original moduli problem X, which is only an S-groupoid, is
not even a stack (leave alone being an algebraic stack), then as
the first step we replace X by its stackification.
The above is an important step in practice.
After that we face the question whether X is algebraic. Artin
[1974] gives a theoretical answer to this via deformation theory.
Explaining the above – to the extent possible within our time
constraints – is the thrust of these lectures.
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Moduli problem : Example BG

Let G be a finite type separated smooth (or finite type separated
flat) group-scheme over S. Example: GLn,S (or µn,S).
The S-groupoid X has for objects all principal G-bundles E/U
over all U ∈ Aff/S. A morphism (f , φ) : E/U → F/V consists of
f : U → V in Aff/S and an isomorphism φ : E → f ∗F of principal
G-bundles over U.
If s : Spec(k)→ S is a geometric point of S (that is, k = k is an
algebraic closed field), then Xs has only one object Gk up to
isomorphism. It has G(k) as its automorphism group in Xs.
Given the presence automorphisms, the moduli cannot be a
scheme (or an algebraic space).
The moduli is an algebraic stack over S, denoted by BG. (Easy if
G is smooth, needs some standard arguments in flat case).
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Example: moduli for line bundles

π : X → S a proper flat scheme over a noetherian base scheme S.
Example X a complete complex variety, S = Spec C.
Moduli problem: An object – a line bundle L on Xs where
s : Spec k → S is a field valued point, and Xs = Spec k ×S X the
valued fiber.
L on XT = X ×S T .
Pullback f ∗L on XT ′ under f : T ′ → T .
PicX/S → S : the moduli space for line bundles on fibers of X/S
(relative Picard ‘scheme’).
Questions How to deform a given line bundle L on some Xs?
Does PicX/S exist? What are its local properties?

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 20 / 79



Example: Coherent sheaves

π : X → S a proper family of schemes.
Moduli problem: objects – coherent sheaves E of OXs -modules
on valued fibers Xs of X/S for s : Spec k → S.
When E 6= 0, O(Xs)× ⊂ Aut(E).
simple (this is the easier case, e.g. line bundles).
A family parameterized by an S-scheme T : a coherent sheaf ET
on XT = X ×S T , which is flat over T . Pullback under T ′ → T .
Questions How to deform a coherent sheaf? Does a moduli
space exist? What are its properties?
Variations Vector bundles, Higgs bundles, connections,
logarithmic connections, Λ-modules.
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Example: First and second order infinitesimals
Dual numbers Formal combinations a + εb, with ε2 = 0.
Rings R[ε]/(ε2), C[ε]/(ε2), or k [ε]/(ε2) for any base field k .
Tangent vectors via dual numbers X a variety, (xi) local
coordinates. Point p ∈ X : defined by xi 7→ ai .
Tangent vector v = bi∂/∂xi ∈ TpX : defined by xi 7→ ai + εbi .
Example Tangent vector to unit sphere X = (

∑
x2

i = 1) given by∑
(ai + εbi)

2 = 1.
∑

a2
i = 1,

∑
aibi = 0 (assume char(k) 6= 2).

Example Orthogonal group O(n) : tXX = I.
Tangent vector at I ∈ O(n): t (I + εB)(I + εB) = I. tB + B = 0.
(I + εB)−1 = I − εB.
Lie algebra structure. R[s, t ]/(s2, t2)
Commutator of X = I + sB and Y = I + tC :
XYX−1Y−1 = I + st(BC − CB).
As (st)2 = 0, I + st(BC − CB) is tangent at I.
This recovers the definition [B,C] = BC − CB.
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Lifting vector bundles to a square-zero thickening -(i)
Assumption: Schemes are noetherian and separated.

X ⊂ X ′ closed subscheme, I ⊂ OX ′ its ideal sheaf.
If I2 = 0 then X ′ is called a square-zero thickening of X .
Then I is naturally a coherent OX -module.
Lifting homomorphisms Let L′, K ′ be line bundles on X ′, let
L = L′|X and K = K ′|X . Let φ : L→ K be an OX -linear morphism.
We want to lift φ to φ′ : L′ → K ′.
Groupoid perspective If φ′|X : L→ K is an isomorphism,
then so is φ′ : L′ → K ′.
0→ I ⊗OX K → K ′ → K → 0 is exact. Apply HomX ′(L′,−) to get
long exact 0→ H0(X , I ⊗OX Hom(L,K ))→ HomX ′(L′,K ′)→
HomX (L,K )

∂→ H1(X , I ⊗OX Hom(L,K ))

A lift exists if and only if ∂(φ) ∈ H1(X , I ⊗OX Hom(L,K )) is zero.
This is the obstruction to lifting φ from X to X ′.
The set of all lifts of φ is a principal set under the action of
H0(X , I ⊗OX Hom(L,K )).
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Lifting vector bundles to a square-zero thickening -(ii)

Lifting objects Let L be a line bundle on X . We want to lift it to X ′.
A lift is a pair (L′,u : L ∼→ L′|X ) up to equivalence, where L′ is line
bundle on X ′.
Special assumption for simplicity: the local and global restriction
maps O×X ′ → O

×
X and O×X ′(X

′)→ O×X (X ) are surjective. Hence,
0→ I → O×X ′ → O

×
X → 0 is exact, where

a 7→ 1 + a under I → O×X ′ (this uses I2 = 0). Also,

0→ H1(X , I)→ H1(X ′,O×X ′)→ H1(X ,O×X )
∂→ H2(X , I) is exact.

The element ∂[L] ∈ H2(X , I) is the obstruction to lifting L. A lift
exists if and only if ∂[L] = 0.
All lifts form a principal set under H1(X , I)-action.
Infinitesimal automorphisms of a lift (L′,u : L ∼→ L′|X ):
isomorphisms φ : L′ → L′ with u−1 ◦ (φ|X ) ◦ u = idL.
These form the group H0(X , I) (exercise).
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Lifting vector bundles to a square-zero thickening -(iii)

We get InfL(I) = H0(X , I), TanL(I) = H1(X , I), and
ObsL(I) = H2(X , I) in terms of general notation introduced later.
Note that in this example, these are independent of L.
Remove special assumptions on X . Let E be a vector bundle on
X . Lifting problem under X ↪→ X ′. Cech computation – actually, an
argument using gerbes – gives (exercise):
A lift is possible if and only if an obstruction class
obsE ,X ,X ′ ∈ ObsE (I) = H2(X , I ⊗ End(E)) is zero.
All lifts form a principal set under TanE (I) = H1(X , I ⊗ End(E)).
The infinitesimal automorphisms of any lift form the group
InfE (I) = H0(X , I ⊗ End(E)).
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Lifting vector bundles to a square-zero thickening -(iv)

Lifting homomorphisms Let E ′, F ′ be line bundles on X ′, let
E = E ′|X , F = F ′|X and φ : E → F be an OX -linear
homomorphism. We want to lift φ to φ′ : E ′ → F ′.
Groupoid perspective If φ′|X : E → F is an isomorphism,
then so is φ′ : E ′ → F ′.
0→ I ⊗OX F → F ′ → F → 0 is exact. Apply HomX ′(E ,−) to
conclude:
A lift φ′ exists if and only if the obstruction
∂(φ) ∈ H1(X , I ⊗OX Hom(E ,F )) is zero.
The set of all lifts of φ is a principal set under
H0(X , I ⊗OX Hom(E ,F )).
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Lifting vector bundles to a square-zero thickening -(v)
V variety over k , and Xn = V ⊗k k [t ]/(tn+1) for any n ≥ 0.
Xn has the same underlying topological space as V .
Regular functions on Xn are f0 + tf1 + . . . tnfn with tn+1 = 0.
Xn ⊂ Xn+1 is a square-zero thickening with ideal sheaf
In = (tn) ⊂ OXn+1 .

For n = 0, we get V = X0 ⊂ X1 = V [ε] = V ⊗k k [ε]/(ε2).
I0 = (ε) ⊂ OV [ε] is isomorphic to OV as a OV -module.
Any E on V has a canonical lift E [ε] to V [ε].
Hence obsE ,V ,V [ε] = 0 ∈ ObsE (ε) = H2(V ,End(E)).
(The cohomology itself may be non-zero.)
E [ε] provides a base point. Hence all lifts to V [ε] form a vector
space TanE (ε) = H1(V ,End(E)).
The infinitesimal automorphisms form the vector space
InfE (ε) = H0(V ,End(E)) = End(E).
Note All these spaces are finite dimensional if V/k is proper.
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Square-zero lifts: coherent sheaves-(i)
A vector bundle on X is the same as a coherent flat OX -module.
Flatness is essential for a workable notion of a ‘family’. Algebraic
analog of continuity.
Grothendieck invented the method of working in a relative set-up.
A scheme X is replaced by a relative scheme X → S. A family of
coherent sheaves on fibers of X → S is a coherent OX -module
that is flat as an OS-module.
Given data: A surjection of rings A′ → A with kernel J which is
square-zero, and a scheme X ′ → Spec A′. We put X = X ′ ⊗A′ A.
Lifting homomorphisms Given a pair of coherent sheaves E ′, F ′
on X ′ ⊗A′ A which are flat over A′, and an OX -homomorphism
φ : E = E ′|X → F ′|X = F , we want OX ′-homomorphism
φ′ : E ′ → F ′ such that φ′|X = φ.
(Exercise) A lift exists if and only if obstruction
∂(φ) ∈ Ext1

X (E , J ⊗A F) is zero.
All lifts form a principal HomX (E , J ⊗A F)-set.
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Square-zero lifts: coherent sheaves -(ii)

Lifting a coherent sheaf Given a coherent sheaf E on
X = X ′ ⊗A′ A, we want a pair (E ′,u : E ∼→ E ′|X ), such that E ′ is a
coherent OX ′-module that is flat over A′, and u is OX -linear
isomorphism.
Note that i∗E (where i : X ↪→ X ′) need not be A′-flat.
(Exercise) A lift (E ′,u : E ∼→ E ′|X ) exists if and only if an
obstruction element obsE,i ∈ Ext2

X (E , J ⊗A E) is zero.
All lifts form a principal Ext1

X (E , J ⊗A E)-set.
form HomX (E , J ⊗A E).
Notice the occurrence of Ext i

X (E , J ⊗A E) for i = 0,1,2.
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Square-zero lifts of schemes and morphisms - (i)
Prolonging morphisms Let g : Y → X a morphisms of schemes
over base S. i : Y ↪→ Y ′ closed embedding of schemes over S,
defined by an ideal sheaf J ⊂ OY ′ with J2 = 0. Makes J a
coherent OY -module. Commutative square:

Y
g→ X

↓ ↓
Y ′ → S

We want a north-east diagonal morphism g′ : Y ′ ↗ X making the
resulting diagram (square plus diagonal) commutative.
If X → S is smooth, then a g′ exists if and only if an obstruction
obsg,i ∈ H1(Y , J ⊗ g∗TX/S) is zero. Here TX/S is the vertical
tangent bundle, which is locally free as X/S is smooth.
All prolongations form a principal H0(Y , J ⊗ g∗TX/S)-set.
Automorphisms of any prolongation form the trivial group
0 = H−1(Y , J ⊗ g∗TX/S).
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Square-zero lifts of schemes and morphisms - (ii)

If X/S is not assumed smooth, we need a gadget called
cotangent complex LX/S in the derived category D≤0(X ).

The answers H i(Y , J ⊗ g∗TX/S) for i = −1,0,1 more generally
become Ext i

Y (g∗LX/S, J) respectively.
The category Exal(X/S,M): Let X/S be a scheme, M a
quasicoherent OX -module.
Objects: S-extensions (i : X ↪→ X ′,u) of X by M, where i is a
closed embedding of S-schemes with square-zero ideal sheaf I,
together with a given OX -module isomorphism u : M ∼→ I. This
gives an exact sequence of OX ′-modules

0→ M u→ OX ′ → OX → 0

where the homomorphism u : M → OX ′ is induced by u : M ∼→ I.
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Square-zero lifts of schemes and morphisms - (iii)

Morphisms in Exal(X/S,M): A morphism ψ from (i1,u1) and
(i2,u2) is a morphism ψ : X ′1 → X ′2 which restricts to identity on X
and gives a commutative diagram of abelian sheaves:

0→ M u1→ OX ′2
→ OX → 0

‖ ψ# ↓ ‖
0→ M u2→ OX ′1

→ OX → 0

By 5-lemma, ψ is an isomorphism, so Exal(X/S,M) is a groupoid.
Exal(X/S,M) has a functorial addition, associativity,
commutativity, unit and inverse, making it a Picard groupoid.
(Name comes from the groupoid Pic(X ) of all line bundles on X .)
Unit object: X [M] = (|X |,OX ⊕M) with where M2 = 0.
Exercise: Give the functorial addition, associativity, etc.
Isomorphism classes in Exal(X/S,M) form a group Exal(X/S,M).
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Square-zero lifts of schemes and morphisms - (iv)
Given any morphism of schemes X → S, we have LX/S in
D≤0(X ). If X → S is finite type, then LX/S is a pseudo-coherent
complex of flat OX -modules.
H0(LX/S) = Ω1

X/S. If X/S is smooth, then LX/S is just the sheaf
Ω1

X/S concentrated in degree 0.
If X ↪→ X ′ is a closed embedding defined by ideal sheaf I, then
H0(LX/X ′) = 0 and H−1(LX/X ′) = I/I2.
LY/X has perfect amplitude contained in [−1,0] if and only if
Y → X is a l.c.i. morphism (smooth ◦ regular immersion).
Morphisms Z

g→ Y f→ X give a functorial exact triangle in D≤0(Z )

g∗LY/X → LZ/X → LZ/Y
(1)→

This generalizes the exact sequence
g∗Ω1

Y/X → Ω1
Z/X → Ω1

Z/Y → 0 as well as the exact sequence
IZ/I2

Z → Ω1
Y/X |Z → Ω1

Z/X → 0 when Z ↪→ Y is a closed
embedding of X -schemes.
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Square-zero lifts of schemes and morphisms - (v)
Important fact Exal(X/S,M) = Ext1(LX/S,M).
Automorphism group of (i : X ↪→ X ′,u : M ∼→ ker(i)) in
Exal(X/S,M) is Der(X/S,M) = Hom(Ω1

X/S,M) = Ext0(LX/S,M).
Lifting a scheme Given X ↪→ X ′ a square-zero extension with
ideal I, f : Y → X a flat morphism, we want a square-zero
extension Y ↪→ Y ′ and a flat morphism f ′ : Y ′ → X ′ such that the
following diagram is cartesian.

Y ↪→ Y ′

f ↓ ↓ f ′

X ↪→ X ′

The X ′-extension (i : X ↪→ X ′, id : I → ker(i)) of X by I defines an
element [X ↪→ X ′] = [(i , id)] ∈ Exal(X/X ′, I) = Ext1(LX/X ′ , I).
Under the adjunction a : I → f∗f ∗I, this defines an element
a∗[X ↪→ X ′] ∈ Exal(X/X ′, f∗f ∗I) = Ext1(LX/X ′ , f∗f ∗I) =

Ext1(f ∗LX/X ′ , f ∗I) = Hom(f ∗I, f ∗I). Exercise: a∗[X ↪→ X ′] = idf∗I .
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Square-zero lifts of schemes and morphisms - (vi)
The equality Ext1(f ∗LX/X ′ , f ∗I) = Hom(f ∗I, f ∗I) used flatness of f
and the facts that H0(LX/X ′) = 0, H−1(LX/X ′) = I.
A lift (j : Y ↪→ Y , f ′ : Y ′ → X ′) gives an isomorphism
v : f ∗I → ker(j) as f ′ is flat and as f = f ′|X (cartesian condition).
This defines an element
[(j , v)] ∈ Exal(Y/X ′, f ∗I) = Ext1(LY/X ′ , f ∗I) with the following
property:
Under the natural map
Exal(Y/X ′, f ∗I)→ Exal(X/X ′, f ∗I) = End(f ∗I), we have
[(j , v)] 7→ a∗[X ↪→ X ′] = idf∗I .
Conversely, if α ∈ Exal(Y/X ′, f ∗I) maps to a∗[X ↪→ X ′], then α
defines a flat lift of X ↪→ X ′ as desired. For, if α is the class of
(j : Y ↪→ Y ′, f ′ : Y ′ → X ′), then f ′ is flat by the following:
Square-zero criterion for flatness I ⊂ A′ ideal, I2 = 0. M ′ an
A′-module such that M = M ′/IM ′ is a flat A = A′/I-module and
the natural map I ⊗A M → M is injective. Then M ′ is flat over A′.
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Square-zero lifts of schemes and morphisms - (vii)

Consider the exact triangle f ∗LX/X ′ → LY/X ′ → LY/X
(1)→.

Apply Hom(−, f ∗I) to get exact 0→ Ext1(LY/X , f ∗I)→
Ext1(LY/X ′ , f ∗I)→ Ext1(f ∗LX/X ′ , f ∗I)

∂→ Ext2(LY/X , f ∗I).
It begins with zero as Ext0(f ∗LX/X ′ , f ∗I) = 0 as
H0(f ∗LX/X ′) = f ∗Ω1

X/X ′ = 0 as f is flat.

Making the substitutions Ext1(LY/X ′ , f ∗I) = Exal(Y/X ′, f ∗I) and
Ext1(f ∗LX/X ′ , f ∗I) = End(f ∗I), we get an exact sequence

0→ Ext1(LY/X , f ∗I)→ Exal(Y/X ′, f ∗I)→ End(f ∗I)
∂→

Ext2(LY/X , f ∗I).
X ↪→ X ′ admits a lift if and only if idf∗I lies in the image of
Exal(Y/X ′, f ∗I)→ End(f ∗I).
Lifts are the same as pre-images of idf∗I in Exal(Y/X ′, f ∗I).
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Square-zero lifts of schemes and morphisms - (viii)

Therefore the element ∂(idf∗I) ∈ Ext2(LY/X , f ∗I) is zero if and
only if a flat lift of X ↪→ X ′ exists. Obstruction.
All lifts form a principal Ext1(LY/X , f ∗I)-set.

The group of automorphisms of any lift is Ext0(LY/X , f ∗I).
The lifting problem for morphisms is the fundamental lifting
problem for all those moduli problems which are representable by
an algebraic stack. For, an family x over T is a 1-morphism
x : T → X, and we wish to prolong x to x ′ : T ′ → X where T ↪→ T ′

is an infinitesimal extension of schemes.
However, it was noticed much earlier that many others lifting
problems reduce to the lifting problem for schemes and
morphisms by clever tricks – see [Illusie]. For example (Nagata), a
Z/(2)-graded version gives the lifting of coherent sheaves.
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Square-zero lifts of schemes and morphisms - (ix)
A stacky version of the cotangent complex exists due to Laumon
(see [L-MB] chapter 17). A crucial difference is LX/S is in D≤1(X).
Exercise: Determine LBG/k for G = GLn,k .
Theorem [Olsson 2006]: given a 1-morphism x : T → X from a
scheme T to an algebraic stack over a base S, and square zero
extension of S-schemes T ↪→ T ′ defined by an ideal J, we have:
The obstruction to the existence of a lift is an element
obsx ∈ Ext1(x∗LX/S, J) = Obsx (J).
The set of all lifts is a principal set under
Ext0(x∗LX/S, J) = Tanx (J).
The infinitesimal automorphisms of a lift are
Ext−1(x∗LX/S, J) = Infx (J).

Illusie : Complexe cotangent et déformations I, II. Springer LNM 239 (1971), 283
(1972). Cotangent complex and deformations of torsors and group schemes. LNM
274 (1972).
Olsson : Deformation theory of representable morphisms of algebraic stacks. Math. Z.
253 (2006).
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Artin local rings: the category Artk/Λ
that systematically parameterizes infinitesimal deformations.

An Artin local ring A is a noetherian ring which has a unique
prime ideal m. Then m is maximal and mn+1 = 0 for some n ≥ 0.
Examples: Any field k , k [x , y , z]/(x2, y3, z5), Z/(4).
A noetherian local ring (R, n) is complete if R = lim←(R/nn+1).
Examples: p-adic integers Zp, formal power series k [[s, t ]].
Not complete (but henselian): convergent power series C{z}.
General set-up: (Λ,mΛ) a complete noetherian local ring,
Λ/mΛ = κ its residue field, k/κ a given finite extension field.
Artk/Λ category of Artin local Λ-algebras A with residue field k .
Note: The finite extension k/κ need not be separable.

Objects: (A, Λ
φ→ A, A/mA

ψ→ k), where A Artin local ring, φ ring
homomorphism, φ(mΛ) ⊂ mA, and ψ is an isomorphism over Λ.
Notation: simply A.
Arrows: Local ring homomorphisms preserving φ, ψ.
Examples: ArtC/C, ArtC/R[[s,t]], ArtFp(t1/p)/Fp(t), ArtFp/Zp (FLT).
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The categories Artk/Λ and Ârtk/Λ

For any finite k -vector space V , we get an object k [V ] = k ⊕ V of
Artk/Λ. Makes FinVectk a full subcategory of Artk/Λ.
k is final object of Artk/Λ. Fiber products exist in Artk/Λ.
k [V ]×k k [W ] = k [V ⊕W ].

Category Ârtk/Λ : objects R are complete local noetherian
Λ-algebras (im(mΛ) ⊂ mR) together with a given Λ-isomorphism
R/mR → k .

Artk/Λ is a full subcategory of Ârtk/Λ. If R is in Ârtk/Λ then each
Rn = R/mn+1

R is in Artk/Λ for n ≥ 0, and R = lim← Rn.

For a groupoid X over Artopp
k/Λ, a formal object over R is a

sequence (En, φn)n≥0 where En is in X(Rn) and φn : En
∼→ En+1|Rn .

Morphisms between two formal objects over R: obvious definition.
Exercise (‘Yoneda’): The natural map Hom(hR,F )→ F̂ (R) is a
bijection for F : Artk/Λ → Sets and R in Ârtk/Λ.
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The infinitesimal conditions of Artin -(i)

We choose a base scheme S and a subcategory C of Rings/S.
The category C is supposed to be closed under the operations
that we will subsequently need. Example: S = Λ and C = Artk/Λ.
A deformation situation in C consists of the following data :
A0 a ring in C,
M an A0-module,
A′ � A � A0 surjections in C with nilpotent kernels, with
ker(A′ � A0) ker(A′ � A) = 0,
M ∼→ ker(A′ � A) an A0-module isomorphism.
By abuse of notation, we will refer to a ‘deformation situation
(A′ � A � A0, M) in C’.
In [Schlessinger 1966], we have C = Artk/Λ. The most common
deformation situation that is considered there has A0 = k ,
A′ � A′/I = A any quotient in Artk/Λ with mA′ I = 0, and M the
resulting finite dimensional k -vector space I.
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The infinitesimal conditions of Artin -(ii)
Let X be a groupoid over Copp. Let A ∈ Ob C, and let a ∈ Ob X(A).
Let C/A be the category of all B → A in C (the comma category).
We define a groupoid Xa on Copp

/A as follows.
For any f : B → A in C, we define Xa(f : B → A) to be the category
whose objects are arrows a→ b in X over the morphism
Spec A→ Spec B (we will simply say ‘over f : B → A’).
When the homomorphism f : B → A is understood, we will denote
Xa(f : B → A) simply by Xa(B).
In terms of a cleavage, the objects of Xa(B) are pairs (b,a ∼→ b|A),
where b ∈ Ob X(B), b|A ∈ Ob X(A) is the ‘pullback’ under
f : B → A in terms of the chosen cleavage, and a ∼→ b|A is an
isomorphism in X(A).
Let f : B → A be a homomorphism in C, and let φ : a→ b1 and
ψ : a→ b2 be objects of Xa(B) over f . A morphism in Xa(B) from
a→ b1 to a→ b2 is a morphism η : b1 → b2 in X(B) (lying over
idB) such that η ◦ φ = ψ.
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The infinitesimal conditions of Artin -(iii)
In particular, for id : A→ A, the groupoid Xa(A) is trivial: it
consists of a single object (a, ida) whose only automorphism is
identity.
Let Xa(B) denote the set of isomorphism classes in Xa(B). Then
B 7→ Xa(B) defines a functor Xa : C/A → Sets.
Let X(B) denote the set of isomorphism classes in X(B). Then
B 7→ X(B) defines a functor X : C → Sets.
Caution! Given (a) ∈ X(A), we can make a another functor
(X)a : C/A → Sets starting from X, by associating to B → A the
subset (X)a(B) ⊂ X(B) which consists of b ∈ X(B) such that
b|A = a. This is not the functor Xa in general.
Thus, even when we want to study infinitesimal deformation
theory for set-valued functors on Artk/Λ (as Schlessinger did), we
must begin with a groupoid X over Artk/Λ.
The functor Xa is not made from the functor X : C/A → Sets. We
need the groupoid X to make both Xa and Xa.
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The infinitesimal conditions of Artin -(iv)
The condition (S-1 a, b).

Begin with a deformation situation (A′ � A � A0, M) in C.
Assume C has all fibered products. Let X be a groupoid over Copp.
(S-1 a) Let B → A be in C, such that the composite B → A→ A0 is
surjective. Let a ∈ Ob X(A). Then the induced map of sets

Xa(A′ ×A B)→ Xa(A′)× Xa(B)

is surjective.
Notation: R a ring, M an R-module. R[M] denotes the R-algebra
R ⊕M with r 7→ (r ,0). (r ,m)(r ′,m′) = (rr ′, rm′ + r ′m). M2 = 0.
(S-1 b) Let B � A0 be a surjection in C, with A0 reduced. Let
a0 ∈ Ob X(A0). Let M be a finite A0-module. Note that
B[M] = B ×A0 A0[M]. Then the induced map of sets

Xa0(B[M]) = Xa0(B ×A0 A0[M])→ Xa0(B)× Xa0(A0[M])

is bijective.
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The infinitesimal conditions of Artin -(v)

With notation as in (S-1 b) above, any object of Xa0(B) has the
form (b,u : a0 → b|A0) where b ∈ Ob X(B). Hence we have

Xa0(B[M]) =
∐

(b,u)∈Xa0 (B)

Xb(B[M])

Hence (S 1 b) has the following alternative form.
(S-1 b) Let B � A0 be a surjection in C, with A0 reduced.
Let M be a finite A0-module, and let B[M]→ A0[M] be the induced
surjection in C. Let b ∈ Ob X(B), and let a0 = b|A0 ∈ Ob X(A0) be
its restriction. Then the induced map of sets

Xb(B[M])→ Xa0(A0[M])

is a bijection.
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The infinitesimal conditions of Artin -(vi)

The following condition, called (S-1’) by Artin, is stronger than (S-1) but
weaker than the Rim-Schlessinger condition (R-S).

(S-1’) With notation as in (S-1)(a), the induced functor

X(A′ ×A B)→ X(A′)×X(A) X(B)

is an equivalence of groupoids, where the right hand side is the
fiber product of groupoids.
Equivalently, for each a ∈ Ob X(A), the induced functor

Xa(A′ ×A B)→ Xa(A′)× Xa(B)

is an equivalence of groupoids, where the right hand side is the
direct product of groupoids.
Exercise: Show that (S-1’)⇒ (S-1) (a) and (b).
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The Rim-Schlessinger condition

Let X be an S-groupoid. The following is called the
Rim-Schlessinger condition.
(R-S) If A′ → A is a surjection in Rings/S with nilpotent kernel and
B → A any homomorphism in Rings/S, then the natural functor

X(A′ ×A B)→ X(A′)×X(A) X(B)

is an equivalence of categories.
The condition (S-1’) of Artin is weaker than this, as it assumes that
the induced map B → A/Nil(A) is surjective.
Another weaker version of the Rim-Schlessinger condition is when
in the above, A, A′, B are supposed to be Artin local, such that the
homomorphisms induce isomorphisms on residue fields.
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The infinitesimal conditions of Artin -(vii)

(S-1)(b) implies that the map φ below is bijective:

Xa0(A0[M ⊕M]) = Xa0(A0[M]×A0 A0[M])
φ→ Xa0(A0[M])× Xa0(A0[M])

This gives rise to a natural addition on Xa0(A0[M]) as the
composite

Xa0(A0[M])× Xa0(A0[M])
φ−1

→ Xa0(A0[M ⊕M])→ Xa0(A0[M])

where the last map is induced by + : M ⊕M → M.
For any λ ∈ A0, the scalar multiplication λ : M → M gives
A0-algebra homomorphism A0[M]→ A0[M] : (a,m) 7→ (a, λm).
This induces λ : Xa0(A0[M])→ Xa0(A0[M]). This makes
Xa0(A0[M]) an A0-module.
Notation: Da0(M) = Xa0(A0[M]) as an A0-module. This is
functorial in (a0,M), and depends linearly on (A0,M).
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The infinitesimal conditions of Artin -(viii)

(S-1) implies that in any deformation situation (A′ � A
q0
� A0, M),

for any object a ∈ Ob X(A) and its restriction a0 ∈ Ob X(A0), the
group Xa0(A0[M]) acts transitively on the set Xa(A′), as follows.

We have an isomorphism A′ ×A0 A0[M]
∼→ A′ ×A A′ defined by

(r ′, r ,m) 7→ (r ′, r ′ + m).
Hence we have a bijection

Xa0(A′)× Xa0(A0[M])
(S 1 b)

= Xa0(A′ ×A0 A0[M]) = Xa0(A′ ×A A′).
Observe that

Xa0(A′) =
∐

(a,u)∈Xa0 (A)

Xa(A′)

and similarly,

Xa0(A′ ×A A′) =
∐

(a,u)∈Xa0 (A)

Xa(A′ ×A A′)
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The infinitesimal conditions of Artin -(ix)

By (S-1 a) we have a surjection Xa(A′ ×A A′)→ Xa(A′)× Xa(A′).
Hence from the above disjoint unions we get the required
surjection

Xa(A′)× Xa0(A0[M])→ Xa(A′)× Xa(A′)

of the form (p1, α) which defines a transitive action α.
Exercise: verify that α is indeed an action. The action α is
transitive as the map (p1, α) is surjective. If the S-groupoid X

satisfies (R-S) ((S-1’) is enough), then
Xa(A′ ×A A′) = Xa(A′)× Xa(A′), so the above action is both
transitive and free.
Condition (S-1) is called as semi-homogeneity and (S-1’) as
homogeneity in Rim [SGA7].
Condition (S-2): Da0(M) = Xa0(A0[M]) is a finite A0-module.
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More on (R-S) -(i)

The condition that X(A′ ×A B)→ X(A′)×X(A) X(B) is an equivalence of
groupoids is made of two requirements:

Full faithfulness: Let c1, c2 ∈ Ob X(A′ ×A B). Then the natural
map below is a bijection.

Hom(c1, c2)→ Hom(c1|A′ , c2|A′)×Hom(c1|A,c2|A) Hom(c1|B, c2|B)

In particular, for any c ∈ Ob X(A′ ×A B), we get an isomorphism

Aut(c)→ Aut(c|A′)×Aut(c|A) Aut(c|B)

Essential surjectivity: The natural map below is surjective.

X(A′ ×A B)→ X(A′)×X(A) X(B)
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More on (R-S) -(ii)

Recall the condition of representability of the diagonal
∆ : X→ X×S X : given any u : U → X and v : V → X where U
and V are in Aff/S, the S-groupoid fiber product U ×X V should
be representable by an algebraic space over S.
The (R-S) condition on X is an input in the proof that the diagonal
of X is representable, by the following ‘bootstrap’ argument:
Exercise: Show that the ‘fully faithful’ part of the condition (R-S)
for an S-groupoid X immediately implies that (R-S) holds for the
set-valued functor U ×X V on Aff/S. This implies Schlessinger’s
(H-1), (H-2) and (H-4) hold for U ×X V restricted to Artk/Λ at any
k -point.
The condition (S-2) (which corresponds to Schlessinger’s (H-3) on
Artk/Λ) for the functor U ×X V amounts to a finiteness condition on
infinitesimal automorphisms, addressed next.
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Finiteness condition for Auta(A[M]) -(i)

Let X be a groupoid over Copp, let A be a ring in C, and let
a ∈ Ob X(A). For any finite A-module M, let a[M] ∈ Ob X(A[M]) be
the image of a under A ↪→ A[M] (that is, the pullback of a under
the projection Spec A[M]→ Spec A). Note that we also have a
closed embedding Spec A ↪→ Spec A[M] defined by the surjection
A[M]→ A : (a,m) 7→ a.
We define Auta(A[M]) ⊂ Aut(a[M]) to be the subgroup consisting
of all φ : a[M]→ a[M] in X(A[M]) such that φ|A = ida.
Let Sa(A[M]) be the underlying subset of the group Auta(A[M]). If
the stronger Rim-Schlessinger condition (R-S) is satisfied, then
we have a natural bijection

Sa(A[M ⊕M]) = Sa(A[M]×A A[M])
∼→ Sa(A[M])× Sa(A[M])

which gives Sa(A[M]) the structure of an A-module.
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Finiteness condition for Auta(A[M]) -(ii)
If u, v ∈ Sa(A[M]), if w ∈ Sa(A[M ⊕M]) is the unique element
which maps to (u, v), and β : A[M ⊕M]→ A[M] is induced by the
addition map M ⊕M → M, then g + h = β(w) by the definition of
addition. Note that the definition of g + h does not use the group
structure on Auta(A[M]).
The scalar multiplication in Sa(A[M]) by λ ∈ A s induced by
A[M]→ A[M] : (a,m) 7→ (a, λm). This makes Sa(A[M]) a module
over A.
If g,h ∈ Auta(A[M]), and if π1, π2 : A[M] ↪→ A[M ⊕M] are the two
inclusions (a,m) 7→ (a,m,0) and (a,m) 7→ (a,0,m), then
w = π1(g) ◦ π1(h) ∈ Auta(A[M ⊕M]) is an element of
Sa(A[M ⊕M]) which maps to (g,h) ∈ Sa(A[M])× Sa(A[M]), so it
is the unique such element (◦ denotes the composition in
Auta(A[M ⊕M]).

Note that the composite A[M]
πi→ A[M ⊕M]

β→ A[M] is identity on
A[M] for i = 1,2. Hence βπ1(g) = g and βπ2(h) = h

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 54 / 79



Finiteness condition for Auta(A[M]) -(iii)

It follows that g + h = β(w) = β(π1(g) ◦ π2(h))g ◦ h ∈ Auta(A[M]),
where ◦ denotes the group operation (composition of
automorphisms) in Auta(A[M ⊕M]) or in Auta(A[M]).
Thus, if (R-S) is satisfied by X, then each Auta(A[M]) is naturally
an A-module, where the addition (sum of tangent vectors) equals
the group multiplication (composition of automorphisms). In
particular, the group Auta(A[M]) is necessarily commutative.
We can directly demand the following, without asking for (R-S) to
be satisfied:
Artin’s finiteness condition for infinitesimal automorphisms
This is the requirement on the groupoid X on Copp that each
Auta(A[M]) should be a finite A-module, where the addition is
defined to be the composition of automorphisms, and the scalar
multiplication is defined to be the map induced by
A[M]→ A[M] : (a,m) 7→ (a, λm).
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Schlessinger’s theorem

M. Schlessinger (1968): Functors of Artin rings.
Let F : Artk/Λ → Sets be a functor, such that F (k) is a singleton set.
Then we have the following.

Theorem: F satisfies (S-1) and (S-2) (equivalently, (H-1), (H-2)
and (H-3)), if and only if there exists a complete noetherian local
Λ-algebra R with residue field k and a versal pro-family
(ξn)n≥0 ∈ F̂ (R) for F over R. Moreover, F satisfies (H-1,2,3,4) if
and only if a universal pro-family (ξn)n≥0 ∈ F̂ (R) exists for R.
Here, each ξn ∈ F (Rn) where Rn = R/mn+1, with ξn = ξn+1|Rn .
Also, once a versal family exists, we also have a miniversal family.
The condition (H-4) says that if A′ → A is surjective in Artk/Λ with
ker(A′ → A) ·mA′ = 0, then F (A′ ×A A′)→ F (A′)×F (A) F (A′) is a
bijection.
Note that (S-1’) is satisfied by any pro-representable functor F .
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Sketch of proof -(i)

We have functor Φ : FinMod/k → Sets which sends
M 7→ k [M] 7→ F (k(M)). Then 0 7→ F (k) which is a singleton set
(terminal object), and

M⊕N 7→ F (k [M⊕N]) = F (k [M]×k k [N])
(S−1b)

= F (k [M])×F (k [N])
so Φ preserves finite products, therefore (exercise!) lifts uniquely
to Φ : FinMod/k → Mod/k .
By (S-2) F (k [M]) is in FinMod/k . In particular,
TF = F (k [ε]/(ε2)) = Φ(k) is a finite dim k -vector space.
Φ is represented by TF in the sense that Φ(M) = M ⊗k TF
(exercise).

So far it was just linear algebra.
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Sketch of proof -(ii)

Construction of a miniversal pro-family (an) ∈ F̂ (R) parametrized by a
certain ring R in Ârtk/Λ.

Let P be the formal power series ring over k , which is the
completion of the local ring at origin of the affine space TF .
Algebraically, P = ̂Symk (T ∗F ), completed at the maximal ideal
generated by T ∗F . Let n ⊂ P denote the maximal ideal.
The ring R = P/J is a quotient of P. The ideal J is constructed
the intersection

n2 = J2 ⊃ J3 ⊃ . . . ⊃ ∩∞q=2 Jq = J

Starting with J2 = n2, the ideals Jq are constructed iteratively, so
that

Jq ⊃ Jq+1 ⊃ nJq ⊃ nq+1
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Sketch of proof -(iii)

On R1 = P/J2 = k [T ∗F ], we have the universal first-order family
given by
idTF ∈ End(TF ) = T ∗F ⊗k TF = Φ(T ∗F ) = F (k [T ∗F ]) = F (R2).
Let a2 denote this family.
We iteratively construct Jq+1 and aq ∈ F (Rq) where Rn = P/Jn+1,
such that Jq+1 is the unique smallest ideal with Jq ⊃ Jq+1 ⊃ nJq
and such that aq−1 ∈ F (P/Jq) admits a lift to F (P/Jq+1). We
choose any lift aq|Rq−1 = aq−1.
Important: While Jq ’s will turn out to be unique, the aq will not
necessarily be so.

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 59 / 79



Sketch of proof -(iv)

A minimal ideal I such that (i) Jq ⊃ I ⊃ nJq and (ii) aq−1 ∈ F (P/Jq)
has at least one lift to F (P/I) exists by descending chain condition
on the Artin ring P/nJq (which is a quotient of J/nq+1).
If I1, I2 are two such ideals then I1 ∩ I2 is again such an ideal, so
such a minimal ideal is unique. (This verification uses a small
trick, and also the hypothesis (H 1)).
Now choose an arbitrary lift aq+1.
Let Iq = Jq/J ⊂ P/J = R. Let m = n/J ⊂ R its maximal ideal. It is
easy to check using Mittag-Leffler condition that R = lim←R/Iq,
and for any n ≥ 1 there exists q ≥ n with In−1 ⊃ mn ⊃ Iq. Hence
(aq) defines an element of lim← F (R/mn) = F̂ (R).

We will omit the verification that this pro-family (an) ∈ F̂ (R) is
formally versal.
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Sketch of proof -(v)

If (H 4) is also satisfied, then the pro-family is universal. This is
because for any small extension B → A in Artk/Λ with kernel I, the
fibers of F (B)→ F (A) are principal TF ⊗k I-sets, and the fibers of
hR(B)→ hR(A) are principal TR ⊗k I-sets. But TF = TR by
construction of R. So if the natural map hR(A)→ F (A) induced by
(an) is a bijection, then the natural map hR(B)→ F (B) is again so
because of the following commutative diagram (top row is
TF ⊗k I-equivariant).

hR(B) → F (B)
↓ ↓

hR(A) = F (A)

Applying the above iteratively from q to q + 1, it follows that (aq)
defines a bijection hR → F on Artk/Λ.
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Grothendieck Existence Theorem

R complete noetherian local ring, X a proper scheme over R.
Rn = R/mn+1. Xn = X ⊗R Rn.
X0 ⊂ X1 ⊂ . . . are square-zero extensions.
E coherent O + X -module. Each En = E |Xn is coherent on Xn. Let
un : En → En+1|Xn denote the induced isomorphisms.
Theorem: The functor E 7→ (En,un)n≥0 is an equivalence of
categories.
Application: Effectiveness for Hilbert and quot functors (blackboard).
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[Artin 1969] Existence of Algebraization

S excellent base, F : Rings/S → Sets functor. Then F is representable
by a (separated) algebraic space of finite type over S if and only if:

(Descent) F is an étale sheaf.
(Finite type) F is locally of finite presentation.
(Effectivity) F is effectively pro-representable.
(Strong representability of diagonal) If U is finite type over S and
ξ, η ∈ F (U) then ξ = η defines a (closed) subscheme of of U.
(Openness of versality) If U is finite type over S and ξ ∈ F (U) is
formally étale at P ∈ U then it is formally étale in a Zariski nbd of
P in U.

Sketch of proof of sufficiency in unobstructed case (blackboard).
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Obstruction theory -(i)
An obstruction theory for X means the following data:
(i) For each infinitesimal extension A � A0 and object a in X(A),
we are given a functor M 7→ Obsa(M) from the category of finite
A0-modules to itself.

(ii) For each deformation situation (A′ � A
q0
� A0, M) and object a

in X(A), we are given an element obsa(A′) ∈ Obsa(M) which is
zero if and only if a has a lift to X(A′).
This data should be functorial, and linear in (A0,M).
Basic example: C = Artk the category of Artin k -algebras with
residue field k . Let R be a complete noetherian local k -algebra
with residue field k . Then R = P/J where P = k [[t1, . . . , tn]]/J
where n = dim(mR/m

2
R), and J ⊂ m2

P where mP = (t1, . . . , tn).
Functor hR : Artk → Sets.
Automorphisms of hR are trivial. Tangent:
hR(k [ε]/(ε2) = (mR/m

2
R)∗.

Obstruction theory: Put Obsa(M) = (J/mPJ)∗ ⊗k M.
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Obstruction theory -(ii)

Given a ∈ hR(A), that is, a : R → A, by arbitrarily lifting the images
of ti , we get a commutative diagram

0→ J → P → R → 0
↓ g ↓ f ↓ a

0→ M → A′ → A → 0

As f (mP) ⊂ mA′ , it follows that g(mPJ) ⊂ mA′M = 0. Hence we get
a map J/mPJ → M, that is, an element

obsa(A′) ∈ (J/mPJ)∗ ⊗k M.

Clearly, a lift a′ : R → A′ exists for a if and only if obsa(A′) = 0.
The set of all lifts is a principal set under (mR/m

2
R)∗ ⊗k M.
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Artin’s Representability Theorem 5.3 [1974] - (i)
Let S be a locally noetherian base which is excellent.
Let X be a groupoid on Aff/S = (Rings/S)opp. The following
conditions are necessary and sufficient for X to be a locally finite type
and locally quasi-separated algebraic stack over S.

Descent condition: The S-groupoid X is a stack on Aff/S in the
fppf topology.
Locally finite type: The S-groupoid X is limit preserving: for any
filtered direct system of rings Ai in Rings/S, we have a natural
equivalence

lim
→

X(Ai)→ X(lim
→

Ai)

This corresponds to being locally of finite type over S.
(5.3.1) Infinitesimal conditions: The S-groupoid X satisfies
Rim-Schlessinger condition (R-S), Da0(M) = Xa0(A0[M]) is a finite
A0-module (S-2), and Auta(A[M]) is a finite A-module.
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Artin’s representability theorem 5.3 [1974] - (ii)
(5.3.2) Effectivity: For any complete local ring (R,m) over S such
that R/m is of finite-type over S, the functor

X(R)→ lim
←

X(R/mn+1)

is fully faithful, and its image is dense (where ‘dense’ means
X(R)→ X(R/mn+1) is essentially surjective for n� 0).
(Fact: If X is an algebraic stack then X(R)→ lim← X(R/mn+1) is
actually an equivalence of categories. The above effectivity
condition is milder.)
(5.3.3) There exists an obstruction theory Obs for X, such that Inf ,
D and Obs satisfy the conditions (4.1).
(5.3.4) Local quasi-separatedness If a0 ∈ X(A0) is algebraic and
φ is an automorphism of a0 which induces the identity in X(k) for a
dense set of points A0 → k of finite type, then φ = id on a
non-empty open subset of Spec(A0).
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Artin conditions Vs Schlessinger conditions

For a set-valued functor F on Artopp
k/Λ, such that F (k) is a singleton set,

the following three conditions are equivalent:

(1) F is pro-representable.
(2) F satisfies (R-S) (same as (S-1’) of Artin) and (S-2).
(3) F satisfies Schlessinger (H-1), (H-2), (H-3), (H-4).

For a groupoid X on Artopp
k/Λ such that X(k) is equivalent to a singleton

set and Artin (R-S) is satisfied, the following two conditions are
equivalent:

(1) Given a surjection A′ → A in Artk/Λ, for any object a′ ∈ X(A′),
the induced homomorphism of groups Aut(a′)→ Aut(a′|A) is
surjective.
(2) The functor X satisfies Schlessinger (H-4).
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Algebraization -(i)

Let R be in Ârtk/Λ, and let (ξn,un) ∈ X̂a(R) be a formal object.
Here, a = ξ0, and un : ξn

∼→ ξn+1|Rn where Rn = R/mn+1
R .

Question Is the formal deformation effective, that is, does there
exist (ξ, vn) where ξ ∈ Xa and vn : ξn

∼→ ξ|Rn compatible with the
un?
Answer Not always! But there is a theorem of Grothendieck which
can often be used to get a positive answer.
Grothendieck existence theorem: special case Let R be a
complete noetherian local ring, let X → Spec R be a proper
morphism of schemes, and let (En,un)n≥0 be coherent sheaves
on Xn = X ⊗R Rn with isomorphisms un : En

∼→ En+1|Xn . Then
there exists a coherent sheaf E on X and isomorphisms
vn : En

∼→ E |Xn compatible with the un.
For a modern treatment, see Illusie’s article in ‘FGA Explained’.
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Algebraization -(ii)
Let k be a field of finite type over S, let ξ0 ∈ Ob X(k), and let R be
a noetherian complete local ring over S with residue field k , with
an object ξ ∈ Xξ0(R) which is smooth over Xξ0 .
This gives a pro-object (ξn,un) where ξn = ξ|Rn and
un : ξn

∼→ ξn+1|Rn where Rn = R/mn+1
R , which is formally versal

over Xξ0 . But we have begun with an actual object ξ ∈ Xξ0(R), that
is, we have effectivity built into our hypothesis.
We want a scheme U of finite type over S, a closed point P0 ∈ U
with residue field k , and an object η ∈ X(U) with an isomorphism
ξ0 → η|P0 , and an S-morphism OU,P0 → R which induces an
isomorphism ÔU,P0 → R, such that for each n ≥ 0, η restricts to ξn
under the composite OU,P0 → R → Rn.
Artin’s theorem on algebraization: The above is realizable if the
S-groupoid X is limit preserving and S is excellent. The chief
ingredient is the Artin approximation theorem, which needs S to
be excellent.
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Algebraization -(iii)

Excellent rings are a class of noetherian commutative rings that are
‘sufficiently well behaved’ for doing algebraic geometry. The rings
which one usually encounters in usual algebraic geometry are indeed
excellent. The definition is technical – instead, we will give some
examples:

Complete noetherian local rings, in particular, all fields.
Dedekind domains of characteristic 0, in particular, Z.
Convergent power series over R or C in finitely many variables.
Any localization of an excellent ring.
Finite type algebras over an excellent ring.
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Algebraization -(iv)

Proof in special case: when S = Spec k and R = k [[t ]]
(blackboard).
The general case is much harder: see [Artin 1969] Algebraization
of formal moduli -I
The openness of formal versality show that there exists an open
neighbourhood V of P0 in U such that η|V is formally smooth over
X.
Starting with all possible k and ξ0 ∈ X(k), and taking disjoint union
of the resulting schemes V , we get a smooth atlas for X.
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Artin [1974] conditions on Inf , Tan, Obs: (4.1)(i)
Let X be a limit-preserving groupoid on Aff/S. Suppose X satisfies
(S-1,2) and suppose we have an obstruction theory Obs for X.
Following are Artin [1974] conditions (4.1) on Inf , Tan, Obs.
Let A be of finite type over S, let A0 = A/Nil(A), let M be a finite
A0-module.

(4.1)(i) Compatibility with étale base-changes: Let A→ B be
étale, and let B0 = B ⊗A A0. Let a ∈ X(A) (means a is an
‘algebraic object’), and let a0 ∈ X(A0), b ∈ X(B) and b0 ∈ X(B0)
denote its various pullbacks. Then the natural maps below are
isomorphisms:

Infb0(M ⊗A0 B0)
∼→ Infa0(M)⊗A0 B0,

Db0(M ⊗A0 B0)
∼→ Da0(M)⊗A0 B0, and

Obsb0(M ⊗A0 B0)
∼→ Obsa0(M)⊗A0 B0.
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Artin [1974] conditions on Inf , Tan, Obs: (4.1) (ii), (iii)
(4.1)(ii) Compatibility with completions: Inf and D are
compatible with completions at maximal ideals m ⊂ A0:

Infa0(M ⊗A0 Â0)
∼→ lim
←

Infa0(M/mn+1), and

Da0(M ⊗A0 Â0)
∼→ lim
←

Da0(M/mn+1).

(4.1)(iii) Constructibility: There exists a dense open subset of
the set of all points of finite type Spec A0 such that at any p in the
subset the following natural maps are isomorphisms,

Infa0(M)⊗A0 k(p)
∼→ Infa0(M ⊗A0 k(p)) and

Da0(M)⊗A0 k(p)
∼→ Da0(M ⊗A0 k(p))

and the following natural map is injective.

Obsa(M)⊗A0 k(p) ↪→ Obsa(M ⊗A0 k(p))
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Openness of versality - (i)
A morphism of schemes f : X → Y is formally smooth if given
any square-zero thickening Spec A→ Spec A′ of affine schemes
over Y , any Y -morphism Spec A→ X prolongs to an Y -morphism
Spec A′ → X .
Fact: f is a smooth morphism if and only if (i) f is locally of finite
presentation and (ii) f is formally smooth.
For a limit-preserving S-groupoid X, and R a ring of finite-type
over S, an object v ∈ X(R) (‘algebraic element’) is said to be
formally smooth if if given any square-zero thickening
Spec A→ Spec A′ of affine schemes over S, an S-morphism
Spec A→ Spec R, and a lift a′ ∈ X(A′) of a = v |A ∈ X(A), there
exists an S-morphism Spec A′ → Spec R and an isomorphism
a′ → v |A′ which restricts to identity on Spec A.
The algebraic element v ∈ X(R) is said to be formally versal at a
point p ∈ Spec R if the above holds whenever A and A′ are Artin
local rings with residue field k(p).
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Openness of versality - (ii)

[Artin 1974] If X is a limit-preserving S-groupoid, with an obstruction
theory, such that (4.1) holds, then the following important facts can be
proved:

Proposition (4.2) An algebraic element v ∈ X(R) is formally
smooth over X if and only if it is formally versal at every point
p ∈ Spec R of finite type.
Proposition (4.3) Formal versality is stable under étale base
change.
Theorem (4.4) If an algebraic element v ∈ X(R) is formally versal
at a finite-type point p ∈ Spec R, then p has an open nbd in which
v is formally smooth. In particular, formal versality is an open
condition: v is formally versal at each finite-type point in the nbd.
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Misprints in hypothesis of Artin [1974] Theorem 5.3

In the statement of Theorem 5.3, there are two misprints:
The hypothesis (1) should include the demand that (S-1’) should hold
(the original text just says (S-1) should hold).
The hypothesis (2) should include the demand that the canonical
functor F (Â)→ lim← F (A/mn+1) is fully faithful (the original text just
says it should be faithful).

Moreover, according to Hall and Rydh [2012], the S-stack X should be
assumed to be an fppf stack (not just an étale stack): if the stack is to
be assumed to be just étale, then some other changes will be needed.
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Artin [1974] Main Theorem (briefly restated)

Let S be an excellent scheme, and let X be an fppf stack over S. Then
X is a finitely presented locally quasi-separated algebraic stack over S
if and only if the following conditions are satisfied.

(1) Infinitesimal conditions: (S-1’) and (S-2) hold. If a0 ∈ X(A0), for
a reduced ring A0 of finite type over S, and M is a finite A0
module, then Infa0(A0[M]) is a finite A0-module.
(2) Effectivity holds: X(R)→ lim← X(R/mn+1) is fully faithful with
dense image for R complete local.
(3) An obstruction theory exists, and Aut-Tan-Obs satisfy (4.1).
(4) Local quasi-separatedness: Any automorphism of an object
over a finite-type reduced algebra which is identity on a dense set
of finite-type points is identity on a non-empty open subset

Nitin Nitsure (TIFR) Deformation Theory and Moduli Spaces 78 / 79



Further progress beyond Artin [1974]
The following is a list (may not be exhaustive – my apologies!) of some
major developments.

H. Flenner (1981): Ein Kriterium fur die Offenheit der Versalitat.
B Conrad and A de Jong (2002): Approximation of versal
deformations.
M Olsson (2006): Deformation theory of representable morphisms
of alg stacks.
J. M. Starr (2006): Artin’s axioms, composition and moduli spaces,
M Olsson (2007): Sheaves on Artin stacks.
J. Wise (2011): Obstruction theories and virtual fundamental
classes.
J. Hall (2011): Openness of versality via coherent functors.
J. Hall and D. Rydh (2012): Artin’s criteria for algebraicity revisited.
Multi-author effort (on-going): The Stacks Project.
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