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Orthogonal Polynomial Ensembles

Let dµn(x) = wn(x)dx + dµn,sing(x) be a (probability) measure on R
with

∫
|t |jdµ(t) <∞ for all j ∈ N.

The Orthogonal Polynomial Ensemble (OPE) of size n, associated with
µn, is the probability measure on Rn given by

dPn(λ1, . . . , λn) =
1

Zn

∏
i>j

(λi − λj)
2dµn(λ1) · · · dµn(λn)

We study a sequence of such probability measures.

• We also allow µn ≡ µ independent of n.
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Example: Unitary Invariant Ensembles of Random Matrices

Consider the probability measure

1

Z̃n

e−ntrV (M)dM

M ∈ n × n Hermitian matrices
V = polynomial of even degree with positive leading coefficient.

• Invariant under conjugation by a unitary matrix.

• Induced measure on the n real eigenvalues:

dPn(λ1, . . . , λn) =
1

Zn

∏
i>j

(λi − λj)
2

n∏
j=1

e−nV (λj)dλ1 · · · dλn

• GUE: V (x) = x2.
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Random tilings: take uniform measure on all possible tilings
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s

P

The number of particles is a

deterministic function of s, N(s)

xj is the distance of the

j-th particle to the base point P

{x1, . . . , xN(s)} is an

orthogonal polynomial ensemble

with µ the Hahn weight (Johansson 2002)
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Orthogonal Polynomial Ensembles

Other examples (see König ’05):

I Random Growth Models (corner-growth model/last passage
percolation/TASEP)

I Random Permutations (longest increasing subsequence)

I Nonintersecting Random Walks/Brownian Motions



Orthogonal Polynomial Ensembles∏
i>j(λi − λj)

2 = square of a Vandermonde determinant.
By manipulating rows we get

dPn =
1

Zn

∏
i>j

(λi − λj)
2dµ(λ1) · · · dµ(λn)

=
1

Z̃n

det (Kn(λi , λj)1≤i,j≤n) dµ(λ1) · · · dµ(λn)

Kn(x , y) =
∑n−1

j=0 pj(x)pj(y).

The reproducing property:

Kn(x , z) =

∫
Kn(x , y)Kn(y , z)dµ(y).

• An orthogonal polynomial ensemble is a determinantal point process
with kernel Kn(x , y).
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Orthogonal Polynomials and Spectral Theory

Recall 
b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
...

. . .
. . .

. . .
. . .




p0(x)
p1(x)
p2(x)

...

 = x


p0(x)
p1(x)
p2(x)

...



If the moment problem is determinate (in particular if µ has compact
support) J is a self-adjoint operator on `2(N) and the spectral measure of
the vector δ1 = (1, 0, 0, . . .)T is µ:(

δ1, (J − z)−1
δ1

)
=

∫
dµ(t)

t − z
z ∈ C \ R.
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Orthogonal Polynomials and Spectral Theory

Consider the truncation

J(n) =



b1 a1 0 . . . 0

a1 b2 a2
. . .

...

0 a2 b3
. . . 0

... . . . . . .
. . . an−1

0 . . . . . . an−1 bn


.

There are n eigenvalues: x
(n)
1 , x

(n)
2 , . . . , x

(n)
n .

• How is µ related to asymptotics of
{
x
(n)
1 , x

(n)
2 , . . . , x

(n)
n

}
and other

objects associated with J(n)?
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Summarizing:

1

Zn

∏
i>j

(λi − λj)
2dµ(λ1) · · · dµ(λn)⇐= µ =⇒ J(n)



Spectral Theory and Orthogonal Polynomial Ensembles

Properties of the orthogonal polynomial ensemble ?
! Properties of J(n)

I Mean Density and Density of States.

I Microscopic Bulk Universality and Clock Spacing.

I (Local) Law of Large Numbers and Behavior of Truncated
Generalized Eigenfunctions (the ‘Nevai condition’).

I Central Limit Theorem and Right Limits.
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The Mean Density and Density of States

Recall (with Kn(x , y) =
∑n−1

j=0 pj(x)pj(y))

dPn =
1

Z̃n

det (Kn(λi , λj)1≤i,j≤n)dµ(λ1) · · · dµ(λn).

∫
I

Kn(x , x)dµ(x) = E {#j | λj ∈ I }

Usually,

lim
n→∞ Kn(x , x)

n
dµ(x) = dν

exists.
E.g., for dµn(x) = e−nV(x)dx, ν minimizes∫ ∫

log
1

|x − y |
dν(x)dν(y) +

∫
V(x)dν(x)
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The Mean Density and Density of States

Recall

J(n) =



b1 a1 0 . . . 0

a1 b2 a2
. . .

...

0 a2 b3
. . . 0

... . . . . . .
. . . an−1

0 . . . . . . an−1 bn


has eigenvalues x

(n)
1 , x

(n)
2 , . . . , x

(n)
n . Let dν(n) = 1

n

∑n
j=1 δx(n)

j

. Then

Theorem (Simon ’09, Avron-Simon ’83)

For fixed bounded J, the limits of Kn(x,x)
n dµ(x) and dν(n)(x) coincide.
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Universality

Assume dν(x) = ρ(x)dx . Fix x0 ∈ Int supp(ρ), a point of continuity for
ρ.

The ‘mean distance’ between particles around x0 is then asymptotically
(nρ(x0))

−1.

Studying the microscopic behavior at x0 means studying

Kn

(
x0 +

a
nρ(x0)

, x0 +
b

nρ(x0)

)
Kn(x0, x0)

This behavior is conjectured to be ‘universal’.
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Universality and Clock Spacing of Eigenvalues

Here universality means that

lim
n→∞

Kn

(
x0 +

a
nρ(x0)

, x0 +
b

nρ(x0)

)
Kn(x0, x0)

=
sinπ(a − b)

π(a − b)

This has an implication for eigenvalues of J(n)!

The Christoffel-Darboux formula says:

Kn(x , y) =
n−1∑
j=0

pj(x)pj(y) = an
pn(x)pn−1(y) − pn(y)pn−1(x)

x − y

So if pn(x) = 0 then Kn(x , y) = 0 iff pn(y) = 0.
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Universality and Clock Spacing of Eigenvalues

Enumerate the eigenvalues of J(n) around x0 by

. . . < x
(n)
−2 < x

(n)
−1 < x0 ≤ x

(n)
0 < x

(n)
1 < . . . .

Theorem (Freud (’71), Levin-Lubinsky (’08))

Assume that

lim
n→∞

Kn

(
x0 +

a
nρ(x0)

, x0 +
b

nρ(x0)

)
Kn(x0, x0)

=
sinπ(a − b)

π(a − b)
.

Then for each fixed j, limn→∞ nρ(x0)
(
x
(n)
j+1 − x

(n)
j

)
= 1.

This type of asymptotic behavior is called clock spacing.
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Universality

Some background:

• Invariant Ensembles: Dyson, Gaudin and Mehta (’60s); Bleher and Its
(’99); Deift, Kriecherbauer, McLaughlin, Venakides and Zhou (’99);
Pastur and Shcherbina (’97).

• Discrete Orthogonal Polynomial Ensembles (discrete sine kernel): Baik,
Kriecherbauer, McLaughlin, Miller (’07).

• Wigner matrices: Erdős, Péché, Raḿırez, Schlein, Yau (’10); Tao and
Vu (’11).



Universality

Recently, Lubinsky introduced two methods for establishing universality
for orthogonal polynomial ensembles with µ locally absolutely continuous:

I. (’09) Comparison inequality: If µ ≤ µ∗ then∣∣∣∣Kn(x , y) − K∗n (x , y)

Kn(x , x)

∣∣∣∣ ≤ (Kn(y , y)

Kn(x , x)

)1/2(
1 −

K∗n (x , x)

Kn(x , x)

)1/2

.

Thus, if the diagonal behavior of Kn and K∗n is sufficiently similar then
universality for µ∗ implies universality for µ. This establishes universality
for regular measures with µ absolutely continuous with continuous
derivative at x0.
Extensions by Findley (’08), Simon (’08), Totik (’09). Maltsev (’10)
applied these ideas to continuum Schrödinger operators.
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applied these ideas to continuum Schrödinger operators.
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Universality

II. (’08) Using the theory of entire functions of exponential type:

If µ is
nice enough around x0 (e.g. derivative bounded above and below) then∣∣∣∣Kn(s, t)

n

∣∣∣∣ ≤ C

for s, t in that neighborhood.
This can be carried over to the complex plane to show that for n
sufficiently large

Kn

(
x0 +

a
n , x0 +

b
n

)
n

≤ C1e
C2(|Ima|+|Imb|)

for a, b in fixed compacts.
Thus, this is a normal family and any limit is an entire function of
exponential type. By studying properties of the limit it follows that in
this case

Universality along the diagonal ⇐⇒ Universality.
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Universality

• This approach was applied to varying measures by Levin and Lubinsky
(’08), and also to show universality at the hard (Lubinsky ’08) and soft
edges of the spectrum (Levin-Lubinsky ’10). It was also used by Avila,
Last and Simon (’10) to show that universality holds in the absolutely
continuous spectrum for ergodic Jacobi matrices (where the spectrum
could also be a Cantor set).



Universality and Clock

Summarizing:

Local absolute continuity of µ (+Other conditions) ⇒ Universality ⇒
Clock.



Universality and Clock Spacing of Eigenvalues

• Clock =⇒ Universality?

• Absolutely continuous spectrum =⇒ Universality?, Absolutely
continuous spectrum =⇒ clock?
Generally no! (Foulquie Moreno, Martinez-Finkelshtein and Sousa ’11).
Still, it seems that the most general result has not yet been obtained.

• Universality =⇒ Absolutely continuous spectrum?

Theorem (B (’11))

There exist Jacobi matrices whose spectral measures are purely singular
continuous on [−2, 2] such that universality, and hence also clock
behavior, holds for all x0 ∈ (−2, 2).

The examples are Schrödinger operators with a sparse potential!

• Universality =⇒ lower bound on the spectral measure? (B, Last, Simon
’14 – partial results).
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Fluctuations on a Large Scale

The linear statistic associated with a function f : R→ R, is

X
(n)
f =

n∑
j=1

f (λj),

where (λ1, λ2, . . . , λn) is random from the orthogonal polynomial
ensemble.

We want to study asymptotics of X
(n)
f − EX (n)

f .

The determinantal structure means that

EX (n)
f =

∫
f (x)Kn(x , x)dµ(x),

VarX
(n)
f =

∫ ∫
f (x)2Kn(x , x)dµ(x) −

∫ ∫
f (x)f (y)Kn(x , y)

2dµ(x)dµ(y)
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Fluctuations on a Large Scale

The Christoffel-Darboux formula says:

Kn(x , y) =
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∣∣∣∣2



Fluctuations on a Large Scale

Thus if an is bounded, VarX
(n)
f is bounded for f Lipschitz!

We expect

• A Law of Large Numbers:

1

n

(
X

(n)
f − EX (n)

f

)→ 0.

• A Central Limit Theorem:

X
(n)
f − EX (n)

f → N
(
0, σ(f )2

)
.
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A Law of Large Numbers



Law of Large Numbers

Theorem (Global Law of Large numbers for OPE, B-Duits)

There exists a universal constant, A > 0, such that for any measure with
finite moments, µ, any bounded function, f , and any ε > 0

P
(

1

n

∣∣∣X (n)
f − EX (n)

f

∣∣∣ ≥ ε) ≤ 2 exp

(
−nεmin

(
ε

8A‖f ‖2∞ ,
1

6‖f ‖∞
))

for all n ∈ N.

In particular, if µn is a sequence of such measures for which also
Kn(x,x)

n dµn(x) has a weak limit, ν, and f is bounded and continuous, then

lim
n→∞ 1

n
X

(n)
f =

∫
f (x) dν(x),

almost surely.
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Law of Large Numbers

• In case
EX(n)

f

n has no limit, there is still a law of large numbers along
subsequences where there is a limit.

• Large deviation principles for matrix models: Ben Arous and Guionnet
(’97); Anderson, Guionnet and Zeitouni (’10).

• Convergence of the moments: Hardy (’13).

• For Lipschitz f we have a stronger bound.

• Ingredients:

A general large deviation estimate for determinantal processes with
kernels that are self-adjoint projections

+

A bound on the variance of X
(n)
f
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A General Large Deviation Estimate

For any determinantal point process with correlation kernel that is a
finite rank self-adjoint projection we show

P(|Xf − EXf | ≥ ε) ≤

2 exp
(
− ε2

4AVarXf

)
, if ε < 2AVarXf

3‖f ‖∞
2 exp

(
− ε

6‖f ‖∞
)
, if ε ≥ 2AVarXf

3‖f ‖∞

The concentration inequality is uniform in the measure µ. The constant
A > 0 that we derive in the proof is

A = 2e2
∞∑

m=0

(e/3)m(m + 2)3/2.
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A Bound on the Variance

Recall
EX (n)

f

n
=

∫
f (x)

Kn(x , x)

n
dµ(x).

By
∫
Kn(x , y)

2dµ(y) = Kn(x , x)

Var X
(n)
f =

∫
f (x)2Kn(x , x)dµ(x) −

∫ ∫
f (x)f (y)Kn(x , y)

2dµ(x)dµ(y)

=

∫ ∫
f (x) (f (x) − f (y))Kn(x , y)

2dµ(x)dµ(y),

So

Var X
(n)
f

n
=

∫ (∫
(f (x) − f (y))

Kn(x , y)
2

Kn(x , x)
dµ(y)

)
f (x)
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n
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The Nevai Condition

A measure, µ, is said to satisfy the Nevai condition at x if for any
continuous, compactly supported function, f ,∫

(f (y) − f (x))
Kn(x , y)

2

Kn(x , x)
dµ(y)→ 0,

as n→∞.

I.e. if
Kn(x , y)

2

Kn(x , x)
dµ(y)→ δx .

Thus:

(Uniform Nevai condition) +

(
Kn(x , x)

n
bounded on supp(f )

)
=⇒ Var Xf = o(n).
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The Nevai Condition

• Some history: Nevai (’79); Nevai (’86); Criscuolo, Mastroianni and
Nevai (’89); Nevai, Totik and Zhang (’91); Lubinsky and Nevai (’92);
Zhang (’93); Szwarc (’95); Della Vecchia (’02); Lasser and Obermaier
(’03); B, Last and Simon (’10); Lubinsky (’11).



The Nevai Condition–Spectral Interpretation

Theorem (B-Last-Simon ’10)

For fixed µ with compact support s.t. inf(an) > 0, the Nevai condition at
x is equivalent to

lim
n→∞ a2n

|pn(x)|
2∑n−1

j=0 |pj(x)|2
= 0.

Recall

J


p0(x)
p1(x)
p2(x)

...

 = x


p0(x)
p1(x)
p2(x)

...

 .



The Nevai Condition–Spectral Interpretation

Theorem (B-Last-Simon ’10)

For fixed µ with compact support s.t. inf(an) > 0, the Nevai condition at
x is equivalent to

lim
n→∞ a2n

|pn(x)|
2∑n−1

j=0 |pj(x)|2
= 0.

Recall

J


p0(x)
p1(x)
p2(x)

...

 = x


p0(x)
p1(x)
p2(x)

...

 .



The Nevai Condition–Spectral Interpretation

Letting

J(n) =



b1 a1 0 . . . 0

a1 b2 a2
. . .

...

0 a2 b3
. . . 0

... . . . . . .
. . . an−1

0 . . . . . . an−1 bn





The Nevai Condition–Spectral Interpretation

we get ∥∥∥∥∥∥∥∥∥
(
J(n) − x

)


p0(x)
p1(x)

...
pn−1(x)


∥∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥∥


p0(x)
p1(x)

...
pn−1(x)


∥∥∥∥∥∥∥∥∥
2 = a2n

|pn(x)|
2∑n−1

j=0 |pj(x)|2



The Nevai Condition–Spectral Interpretation

Thus:
Nevai condition at x =⇒ truncated generalized eigenfunction is an
approximate eigenfunction at x .

Conjecture (B-Last-Simon (’10))

For any compactly supported µ, the Nevai condition holds for µ-a.e. x.

• This is known in many particular cases (see the list above).

• B-Duits show that universality at x+absolute continuity =⇒ Nevai
condition holds at x .
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condition holds at x .



A Local Law of Large Numbers

For α ∈ (0, 1) and x∗, let

X
(n)
f ,α,x∗ =

n∑
j=1

f (nα(λj − x∗))

The proof of the following local LLN uses a local version of the Nevai
condition.

Theorem (Local Law of Large Numbers for OPE, B-Duits ’13)

Assume µ is regular and assume that on a neighborhood of x∗, µ is
absolutely continuous with continuous and nonvanishing derivative. Then
for any continuous f with compact support and ε > 0

P

(
nα

∣∣∣∣∣X (n)
f

n
−

EX (n)
f

n

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−εn1−α/6‖f ‖∞) .
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A Central Limit Theorem



Central Limit Theorem

Theorem (B-Duits ’13)

Assume that for any ` ∈ Z,

an+`,n → a bn+`,n → b.

Then for any polynomial with real coefficients, f,

X
(n)
f − EX (n)

f → N

(
0,

∞∑
k=1

k |f̂k |
2

)

where

f̂k =
1

2π

∫∞
0

f (2a cos θ+ b) e−iθkdθ



Central Limit Theorem for C 1 functions

Theorem (B-Duits 13)

Suppose there is a compact E ⊂ R such that for any k ∈ N we have∫
R\E

|x |kKn(x , x)dµ(x) = o(1/n),

as n→∞. Then the CLT holds for any f ∈ C 1(R) such that
|f (x)| ≤ C (1 + |x |k) for some C > 0 and k ∈ N.

Corollary

If µ is non-varying and has compact support then the CLT holds for any
f ∈ C 1(supp(µ)).



Examples

• Unitary Ensembles.
The eigenvalues are an orthogonal polynomial ensembles with

dµn(x) = e−nV (x)dx .

with supp(ν) = [γ, δ].
A Central Limit Theorem in this case has been proven by Johansson (’98)
for the case that supp(ν) is a single interval. His techniques and results
were extended by Kriecherbauer and Shcherbina (’10) and Borot and
Guionnet (’12).

The theorem above reproduces these results.
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Examples

• Lozenge tiling of the hexagon.

The locations of on a vertical section are an orthogonal polynomial
ensemble with

dµ =

N∑
x=0

(
α+ x
x

)(
β+ N − x
N − x

)
δx .

This is called the Hahn weight and the orthogonal polynomials are the
Hahn polynomials.
A ‘two-dimensional’ Central Limit Theorem in this case has been proven
by Petrov (’13)

A Central Limit Theorem for the one-dimensional sections also follows
from the theorem above.
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Examples

The following result for the non-varying situation follows by combining
the CLT with the celebrated Denisov-Rakhmanov Theorem.

Theorem

Fix
dµ = w(x)dx + dµsing ,

and assume that suppess(µ) = [γ, δ] and w(x) > 0 Lebesgue a.e. on
[γ, δ]. Then for any f ∈ C 1(R) we have

X
(n)
f − EX (n)

f → N

(
0,

∞∑
k=1

k |fk |
2

)

where

f̂k =
1

2π

∫2π
0

f

(
δ− γ

2
cos θ+

δ+ γ

2

)
e−ikθdθ.



Central Limit Theorem

A CLT holds also along subsequences:

Theorem (B-Duits ’13)

Assume that there exists a subsequence {nj }j such that for any ` ∈ Z we
have

anj+`,nj → a bnj+`,nj → b

as j →∞. Then for any polynomial with real coefficients, f ,

X
(nj)
f − EX (nj)

f → N

(
0,

∞∑
k=1

k |f̂k |
2

)

where

f̂k =
1

2π

∫2π
0

f (2a cos θ+ b)e−iθkdθ.



Example
Thus, it is possible that for a fixed measure µ we have different CLT’s for
different subsequences:

By taking Jacobi parameters bn ≡ 0 and an varying at an increasingly
slower rate between 1/2 and 1 we can have that for each a ∈ [1/2, 1]
there is a subsequence nj(a) such that for each fixed ` ∈ Z.

anj(a)+k → a, as j →∞.

The corresponding OPE has a different CLT for each subsequence. The
corresponding measure, µ, is absolutely continuous in (−1, 1) and purely
singular in [−2, 2] \ (−1, 1).

In this example a Law of Large Numbers still holds:

lim
n→∞ 1

n
Xn(f ) =

∫
f (x)dνeq(x)

where νeq is the equilibrium measure for the interval [−2, 2].
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Right Limits

The general result involves the notion of right limit for Jacobi matrices:

Suppose {Jn}n is a sequence of one-sided Jacobi matrices.

Definition

JR , a two-sided Jacobi matrix, is called a right limit of {Jn}n if for some
nj →∞ and all k , ` ∈ Z (but not necessarily uniformly in k , `),(

JR
)
k,`

= lim
j→∞

(
Jnj
)
nj+k,nj+`

• Right limits of Jacobi matrices and Schrödinger operators were
introduced as a tool in spectral theory by Last and Simon (’99), and have
been used to study absolutely continuous spectrum (Last-Simon ’99,
Remling ’11), essential spectrum (Last-Simon ’06), and even boundary
behavior of power series (B-Simon ’11).
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Examples

• If for any k ∈ Z
an+k,n → a bn+k,n → b

then the unique right limit of J is the Laurent matrix L with

Li,j =

 a |i − j | = 1
b i = j
0 otherwise

• Let Jn ≡ J with parameters aj , bj . Then

an → a bn → b

iff L as above is the unique right limit of J.
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CLT from Right Limits

Let s(z) =
∑p

j=−q sjz
j be a Laurent polynomial. We denote by L(s) the

associated Laurent matrix:

(L(s))i,j = si−j .

Theorem

Suppose L(s) is a right limit of {Jn}n along the subsequence nj . Then for
any polynomial with real coefficients, f ,

X
(nj)
f − EX (nj)

f → N

(
0,

∞∑
k=1

k |f̂k |
2

)
,

where

f̂k =
1

2πi

∮
|z|=1

f (s(z))
dz

zk+1
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A General Limit Theorem

Theorem

Let JR be a right limit of J (bounded and fixed!) with subsequence {nj }j .
Define (

JRM
)
kl
=

{
(JR)kl , k , l = −M, . . . ,M,

0, otherwise
.

Let P− be the projection on the negative coefficients

(P−x)k =

{
xk k < 0

0 k ≥ 0.
. Then for any polynomial f we have

lim
j→∞E

[
exp t(X

(nj)
f − EX (nj)

f )
]

= lim
M→∞ etTrP−f (JR

M) det
(
I + P−(e

tf (JR
M) − I )P−

)
In particular, both limits exist.



A General Limit Theorem

• It is an interesting open problem to find the limiting value at the
right-hand side for various possible JR . For example, if JR is two-periodic
this should of course match with known formulas for the
multi-cut(=finite gap) case (see Shcherbina ’13, Borot-Guionnet ’13).

• While in the general finite gap case a CLT does not hold for any f in
general, in the case that the related Jacobi matrix is periodic, a CLT does
hold for f ◦ ∆ where ∆ is the associated discriminant!
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A Word About the Proofs



Cumulant Expansion

Expand the moment-generating function

E
[
exp tX

(n)
f

]
) = det(1 + (etf − 1)Kn)

= expTr log
(
(etf − 1)Kn

)
= exp

( ∞∑
m=1

tmC (n)
m (f )

)

where

C (n)
m (f ) =

m∑
j=1

(−1)j

j

∑
l1+···+lj=m,li≥1

Trf l1Kn · · · f ljKn

l1! · · · lj !

are the cumulants.



Estimating the Cumulants

For a Central Limit Theorem one needs to show that

lim
n→∞C (n)

m (f )→ {2σ(f )2, m = 2

0, m ≥ 3.

Problem: each term in the sum

C (n)
m (f ) =

m∑
j=1

(−1)j

j

∑
l1+···+lj=m,li≥1

Tr f l1Kn · · · f ljKn

l1! · · · lj !

grows linearly with n. Some effective cancellation occurs!



Estimating the Cumulants

By using the identity

m∑
j=1

(−1)j

j

∑
l1+···+lj=m,li≥1

1

l1! · · · lj !
= 0

for m ≥ 2, we may write

C (n)
m (f ) =

m∑
j=1

(−1)j

j

∑
l1+···+lj=m,li≥1

Tr f l1Kn · · · f ljKn − Tr f mKn

l1! · · · lj !

for m ≥ 2.

Now each term in the double sum can be shown to be bounded
(effectively by the variance). This captures a first cancellation.

This is the first key step towards the concentration inequalities!

For a CLT we need to identify further cancellations.
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Estimating the Cumulants

Use orthogonality to rewrite

C (n)
m (f ) =

m∑
j=1

(−1)j

j

∑
l1+···+lj=m,li≥1

Tr f l1Kn · · · f ljKn − Tr f mKn

l1! · · · lj !

=

m∑
j=1

(−1)j

j

∑
l1+···+lj=m,li≥1

Tr f (J)l1Pn · · · f (J)ljPn − Tr f (J)mPn

l1! · · · lj !

By using the band structure of J (and hence of f (J) for polynomial f ) it
is not hard to prove that

Tr f (J)l1Pn · · · f (J)ljPn − Tr f (J)mPn

only depends on a finite and fixed number of recurrence coefficients.

Thus only a relatively small part of J matters in the fluctuation.



A Comparison Principle

This leads to the following principle:

Comparison/Universality principle

If J1 and J2 have the same right limit JR along the same subsequence
{nj }, then the corresponding cumulants have the same limits along these
subsequences.

Hence if J has a Laurent matrix L(s) as a right limit, then we can
assume that J is a matrix with constant diagonals from the start!

It follows that we only need to compute the CLT for this special case.



A CLT for Toeplitz Matrices

Lemma (B-Duits 13)

Let s(z) =
∑p

j=−q sjz
j be a Laurent polynomial. Then for T (s), the

associated Toeplitz matrix,

lim
n→∞ det

(
I + Pn(e

T(s) − I )Pn

)
e−Tr PnT(s) = exp

(
1

2

∞∑
k=1

ksks−k

)

The proof is based on Ehrhardt’s generalization of the
Helton-Howe-Pincus formula: if [A,B] is trace class, then

det e−AeA+Be−B = exp
1

2
Tr[A,B].

(This formula essentially captures the final cancellations in the cumulant
expansion)



Outlook

• Extensions: The CLT described can be extended to biorthogonal
ensembles with a recurrence (e.g. the two matrix model).

• β 6= 2.

• Mesoscopic CLT.

• Fine spectral properties of Jacobi matrices.



Thank you for your attention


