Infinite gap Jacobi matrices

Jacob Stordal Christiansen

Centre for Mathematical Sciences, Lund University

Spectral Theory of Orthogonal Polynomials Master class by Barry Simon

Centre for Quantum Geometry of Moduli Spaces Århus University

Outline

– a large class of compact subsets of the real line $\ensuremath{\mathbb{R}}$

– a large class of compact subsets of the real line $\ensuremath{\mathbb{R}}$

Szegő class theory

- including asymptotics of the orthogonal polynomials

Literature

- M. Sodin and P. Yuditskii. Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions. *J. Geom. Anal.* **7** (1997) 387-435
- F. Peherstorfer and P. Yuditskii. Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. **89** (2003) 113–154
- J. S. Christiansen. Szegő's theorem on Parreau–Widom sets. *Adv. Math.* **229** (2012) 1180–1204
- C. Remling. The absolutely continuous spectrum of Jacobi matrices. Ann. Math. **174** (2011) 125–171
- P. Yuditskii. On the Direct Cauchy Theorem in Widom domains: Positive and negative examples. *Comput. Methods Funct. Theory* **11**, 395–414 (2011)
- J. S. Christiansen. Dynamics in the Szegő class and polynomial asymptotics.

Let $E \subset \mathbb{R}$ be a compact set of positive logarithmic capacity and denote by g the Green's function for $\Omega = \overline{\mathbb{C}} \setminus E$ with pole at ∞ .

Let $E \subset \mathbb{R}$ be a compact set of positive logarithmic capacity and denote by g the Green's function for $\Omega = \overline{\mathbb{C}} \setminus E$ with pole at ∞ .

Assume that each point of E is a regular point for Ω and let $d\mu_{\rm E}$ be the equilibrium measure of E.

Let $E \subset \mathbb{R}$ be a compact set of positive logarithmic capacity and denote by g the Green's function for $\Omega = \overline{\mathbb{C}} \setminus E$ with pole at ∞ .

Assume that each point of E is a regular point for Ω and let $d\mu_{\rm E}$ be the equilibrium measure of E.

Recall that

$$g(x) = \int \log |t - x| d\mu_{\rm E}(t) - \log({\rm Cap}({\rm E}))$$
$${\rm E} = [\alpha, \beta] \setminus \bigcup_{i} (\alpha_{i}, \beta_{j}).$$

and write

Let $E \subset \mathbb{R}$ be a compact set of positive logarithmic capacity and denote by g the Green's function for $\Omega = \overline{\mathbb{C}} \setminus E$ with pole at ∞ .

Assume that each point of E is a regular point for Ω and let $d\mu_{\rm E}$ be the equilibrium measure of E.

Recall that

$$g(x) = \int \log |t - x| d\mu_{\mathsf{E}}(t) - \log(\mathsf{Cap}(\mathsf{E}))$$
$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_{i} (\alpha_{i}, \beta_{i}).$$

and write

While g vanishes on E, it is concave on (α_j, β_j) for each j. So there is precisely one critical point c_j per gap.

Let $E \subset \mathbb{R}$ be a compact set of positive logarithmic capacity and denote by g the Green's function for $\Omega = \overline{\mathbb{C}} \setminus E$ with pole at ∞ .

Assume that each point of E is a regular point for Ω and let $d\mu_{\rm E}$ be the equilibrium measure of E.

Recall that

$$g(x) = \int \log |t - x| d\mu_{\rm E}(t) - \log({\rm Cap}({\rm E}))$$
$${\rm E} = [\alpha, \beta] \setminus \bigcup_{i} (\alpha_{i}, \beta_{i}).$$

and write

While g vanishes on E, it is concave on (α_j, β_j) for each j. So there is precisely one critical point c_j per gap.

Let $E \subset \mathbb{R}$ be a compact set of positive logarithmic capacity and denote by g the Green's function for $\Omega = \overline{\mathbb{C}} \setminus E$ with pole at ∞ .

Assume that each point of E is a regular point for Ω and let $d\mu_{\rm E}$ be the equilibrium measure of E.

Recall that

$$g(x) = \int \log |t - x| d\mu_{\mathsf{E}}(t) - \log(\mathsf{Cap}(\mathsf{E}))$$

and write

$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_j (\alpha_j, \beta_j).$$

While g vanishes on E, it is concave on (α_j, β_j) for each j. So there is precisely one critical point c_j per gap.

<u>Defn.</u> We call E a Parreau–Widom set if $\sum_{j} g(c_j) < \infty$.

Comb-like domains

Homogeneous sets

Any finite gap set is PW, but the notion goes way beyond.

Homogeneous sets

Any finite gap set is PW, but the notion goes way beyond.

It includes all compact sets E that are *homogeneous* in the sense of Carleson. By definition, this means there is an $\varepsilon > 0$ so that

$$\frac{|(t-\delta,t+\delta)\cap \mathsf{E}|}{\delta} \ge \varepsilon \text{ for all } t \in \mathsf{E} \text{ and all } \delta < \operatorname{diam}(\mathsf{E}).$$

This geometric condition was introduced to avoid cases where certain parts of E are very thin compared to Lebesgue measure.

Homogeneous sets

Any finite gap set is PW, but the notion goes way beyond.

It includes all compact sets E that are *homogeneous* in the sense of Carleson. By definition, this means there is an $\varepsilon > 0$ so that

$$\frac{|(t-\delta,t+\delta)\cap \mathsf{E}|}{\delta} \ge \varepsilon \text{ for all } t \in \mathsf{E} \text{ and all } \delta < \operatorname{diam}(\mathsf{E}).$$

This geometric condition was introduced to avoid cases where certain parts of E are very thin compared to Lebesgue measure.

Example

Remove the middle 1/4 from [0, 1] and continue removing subintervals of length 1/4ⁿ from the middle of each of the 2^{*n*-1} remaining intervals. Let E be the set of what is left in [0, 1] — a fat Cantor set of |E| = 1/2. One can show that $|(t - \delta, t + \delta) \cap E| \ge \delta/4$ for all $t \in E$ and all $\delta < 1$.

Gábor Szegő

Szegő's theorem on PW sets

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and let $J = \{a_n, b_n\}_{n=1}^{\infty}$ be a Jacobi matrix with spectral measure $d\rho = f(t)dt + d\rho_s$.

Szegő's theorem on PW sets

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and let $J = \{a_n, b_n\}_{n=1}^{\infty}$ be a Jacobi matrix with spectral measure $d\rho = f(t)dt + d\rho_s$.

Assume that $\sigma_{ess}(J) = E$ and denote by $\{x_k\}$ the eigenvalues of J outside E, if any. [Adv. Math. 2012]

On condition that $\sum_k g(x_k) < \infty$, we have

$$\int_{\mathsf{E}} \log f(t) d\mu_{\mathsf{E}}(t) > -\infty \quad \Leftrightarrow \quad \limsup_{n \to \infty} \frac{a_1 \cdots a_n}{\mathsf{Cap}(\mathsf{E})^n} > 0.$$

In the affirmative,

$$0 < \liminf_{n \to \infty} \frac{a_1 \cdots a_n}{\operatorname{Cap}(\mathrm{E})^n} \le \limsup_{n \to \infty} \frac{a_1 \cdots a_n}{\operatorname{Cap}(\mathrm{E})^n} < \infty.$$

Szegő's theorem on PW sets

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and let $J = \{a_n, b_n\}_{n=1}^{\infty}$ be a Jacobi matrix with spectral measure $d\rho = f(t)dt + d\rho_s$.

Assume that $\sigma_{ess}(J) = E$ and denote by $\{x_k\}$ the eigenvalues of J outside E, if any. [Adv. Math. 2012]

On condition that $\sum_k g(x_k) < \infty$, we have

$$\int_{\mathsf{E}} \log f(t) d\mu_{\mathsf{E}}(t) > -\infty \quad \Leftrightarrow \quad \limsup_{n \to \infty} \frac{a_1 \cdots a_n}{\operatorname{Cap}(\mathsf{E})^n} > 0.$$

In the affirmative,

$$0 < \liminf_{n \to \infty} \frac{a_1 \cdots a_n}{\operatorname{Cap}(\mathrm{E})^n} \leq \limsup_{n \to \infty} \frac{a_1 \cdots a_n}{\operatorname{Cap}(\mathrm{E})^n} < \infty.$$

- What can be said about b_n and can we say more about a_n ?

The Szegő class

Inspired by Szegő's theorem, we introduce the class $\operatorname{Sz}(\mathsf{E}).$

The Szegő class

Inspired by Szegő's theorem, we introduce the class Sz(E).

<u>Defn.</u> A Jacobi matrix with spectral measure $d\rho = f(t)dt + d\rho_s$ is said to belong to the *Szegő class* for E if

- the essential support of $d\rho$ is equal to E,
- the absolutely continuous part of d
 ho obeys the Szegő condition

$$\int_{\mathbf{E}} \log f(t) d\mu_{\mathbf{E}}(t) > -\infty,$$

• the isolated mass points x_k of $d\rho$ outside E satisfy the condition

$$\sum_k g(x_k) < \infty.$$

The Szegő class

Inspired by Szegő's theorem, we introduce the class Sz(E).

<u>Defn.</u> A Jacobi matrix with spectral measure $d\rho = f(t)dt + d\rho_s$ is said to belong to the *Szegő class* for E if

- the essential support of $d\rho$ is equal to E,
- the absolutely continuous part of d
 ho obeys the Szegő condition

$$\int_{\mathbf{E}} \log f(t) d\mu_{\mathbf{E}}(t) > -\infty,$$

• the isolated mass points x_k of $d\rho$ outside E satisfy the condition

$$\sum_k g(x_k) < \infty.$$

- Do we have power asymptotics of the orthogonal polynomials?

Reflectionless operators

Given a PW set E, we denote by \mathcal{T}_E the set of all two-sided Jacobi matrices $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ that have spectrum equal to E and are *reflectionless* on E, that is,

$$\operatorname{Re}\left(\delta_{n},\left(J'-(t+i0)\right)^{-1}\delta_{n}\right)=0$$
 for a.e. $t\in E$ and all n .

Reflectionless operators

Given a PW set E, we denote by \mathcal{T}_E the set of all two-sided Jacobi matrices $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ that have spectrum equal to E and are *reflectionless* on E, that is,

$$\operatorname{Re}\langle \delta_n, (J' - (t + i0))^{-1}\delta_n \rangle = 0$$
 for a.e. $t \in E$ and all n

$$J' = \begin{pmatrix} \ddots & \ddots & | \\ \ddots & b'_{n-1} & a'_{n-1} & | \\ - - - & - & - & - \\ a'_{n-1} & b'_{n} & | & a'_{n} \\ - - & - & - & - \\ a'_{n} & | & b'_{n+1} & a'_{n+1} \\ & | & a'_{n+1} & b'_{n+2} & \ddots \\ & | & & \ddots \end{pmatrix}$$

Reflectionless operators

Given a PW set E, we denote by \mathcal{T}_E the set of all two-sided Jacobi matrices $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ that have spectrum equal to E and are *reflectionless* on E, that is,

$$\operatorname{Re}(\delta_n, (J' - (t + i0))^{-1}\delta_n) = 0$$
 for a.e. $t \in E$ and all n

$$J' = \begin{pmatrix} \ddots & \ddots & & & \\ \ddots & b'_{n-1} & a'_{n-1} & & \\ -\frac{a'_{n-1}}{2} & \frac{b'_{n-1}}{2} & -\frac{a'_{n-1}}{2} & -\frac{a'_{n-1}}{2} & \\ -\frac{a'_{n-1}}{2} & \frac{b'_{n+1}}{2} & \frac{a'_{n+1}}{2} & \\ & & & | & a'_{n+1} & b'_{n+2} & \ddots \\ & & & & | & \ddots & \ddots \end{pmatrix}$$

Equivalently,

$$(a'_n)^2 m_n^+(t+i0) = \frac{1}{\overline{m_n^-(t+i0)}} \text{ for a.e. } t \in E \text{ and all } n,$$

where m_n^+ is the *m*-function for $J_n^+ = \{a'_{n+k}, b'_{n+k}\}_{k=1}^{\infty}$ and m_n^- the *m*-function for $J_n^- = \{a'_{n-k}, b'_{n+1-k}\}_{k=1}^{\infty}$.

By compactness, any bounded $J = \{a_n, b_n\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called *right limits* of J.

By compactness, any bounded $J = \{a_n, b_n\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called *right limits* of J.

Let $E \subset \mathbb{R}$ be a compact set and assume that |E| > 0. If $\sigma_{ess}(J) = E$ and the spectral measure $d\rho = f(t)dt + d\rho_s$ of J obeys f(t) > 0 for a.e. $x \in E$,

then any right limit of J belongs to \mathcal{T}_{E} . [Ann. of Math. 2011]

By compactness, any bounded $J = \{a_n, b_n\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called *right limits* of J.

Let $E \subset \mathbb{R}$ be a compact set and assume that |E| > 0. If $\sigma_{ess}(J) = E$ and the spectral measure $d\rho = f(t)dt + d\rho_s$ of J obeys f(t) > 0 for a.e. $x \in E$,

then any right limit of J belongs to \mathcal{T}_{E} . [Ann. of Math. 2011]

The theorem says that the left-shifts of J approach T_E as a set.

By compactness, any bounded $J = \{a_n, b_n\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called *right limits* of J.

Let $E \subset \mathbb{R}$ be a compact set and assume that |E| > 0. If $\sigma_{ess}(J) = E$ and the spectral measure $d\rho = f(t)dt + d\rho_s$ of J obeys f(t) > 0 for a.e. $x \in E$,

then any right limit of J belongs to \mathcal{T}_{E} . [Ann. of Math. 2011]

The theorem says that the left-shifts of J approach T_E as a set. Hence, T_E is the natural limiting object associated with E.

The collection of divisors

Recall that

$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_j (\alpha_j, \beta_j).$$

The collection of divisors

Recall that

$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_j (\alpha_j, \beta_j).$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E.

The collection of divisors

Recall that

$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_j (\alpha_j, \beta_j).$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E.

The set \mathcal{D}_{E} of *divisors* consists of all formal sums

$$D = \sum_{j} (y_j, \pm), \quad y_j \in [\alpha_j, \beta_j],$$

where $(y_j, +)$ and $(y_j, -)$ are identified when y_j is equal to α_j or β_j .

The collection of divisors

Recall that

$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_j (\alpha_j, \beta_j).$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E.

The set \mathcal{D}_{E} of *divisors* consists of all formal sums

$$D = \sum_{j} (y_j, \pm), \quad y_j \in [\alpha_j, \beta_j],$$

where $(y_j, +)$ and $(y_j, -)$ are identified when y_j is equal to α_j or β_j .

The collection of divisors

Recall that

$$\mathsf{E} = [\alpha, \beta] \setminus \bigcup_j (\alpha_j, \beta_j).$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E.

The set \mathcal{D}_{E} of *divisors* consists of all formal sums

$$D = \sum_{j} (y_j, \pm), \quad y_j \in [\alpha_j, \beta_j],$$

where $(y_j, +)$ and $(y_j, -)$ are identified when y_j is equal to α_j or β_j .

We shall equip \mathcal{D}_E with the product topology.

A map $\mathcal{T}_E \rightarrow \mathcal{D}_E$

When $J' \in \mathcal{T}_E$, we know that $G(x) = \langle \delta_0, (J'-x)^{-1} \delta_0 \rangle$ is analytic on $\mathbb{C} \times E$ and has purely imaginary boundary values a.e. on E.

A map $\mathcal{T}_E \rightarrow \mathcal{D}_E$

When $J' \in \mathcal{T}_E$, we know that $G(x) = \langle \delta_0, (J'-x)^{-1} \delta_0 \rangle$ is analytic on $\mathbb{C} \setminus E$ and has purely imaginary boundary values a.e. on E.

Such Nevanlinna-Pick functions admit a representation of the form

$$G(x) = \frac{-1}{\sqrt{(x-\alpha)(x-\beta)}} \prod_{j} \frac{x-y_j}{\sqrt{(x-\alpha_j)(x-\beta_j)}},$$

where $y_j \in [\alpha_j, \beta_j]$ for each j.

A map $\mathcal{T}_{E} \rightarrow \mathcal{D}_{E}$

When $J' \in \mathcal{T}_E$, we know that $G(x) = \langle \delta_0, (J'-x)^{-1} \delta_0 \rangle$ is analytic on $\mathbb{C} \setminus E$ and has purely imaginary boundary values a.e. on E.

Such Nevanlinna-Pick functions admit a representation of the form

$$G(x) = \frac{-1}{\sqrt{(x-\alpha)(x-\beta)}} \prod_{j} \frac{x-y_j}{\sqrt{(x-\alpha_j)(x-\beta_j)}},$$

where $y_j \in [\alpha_j, \beta_j]$ for each j.

Using the relation

$$(a'_0)^2 m^+(x) - 1/m^-(x) = -1/G(x),$$

it follows that every $y_j \in (\alpha_j, \beta_j)$ is a pole of either m^+ or $1/m^-$.

A map $\mathcal{T}_E \rightarrow \mathcal{D}_E$

When $J' \in \mathcal{T}_E$, we know that $G(x) = \langle \delta_0, (J' - x)^{-1} \delta_0 \rangle$ is analytic on $\mathbb{C} \setminus E$ and has purely imaginary boundary values a.e. on E.

Such Nevanlinna-Pick functions admit a representation of the form

$$G(x) = \frac{-1}{\sqrt{(x-\alpha)(x-\beta)}} \prod_{j} \frac{x-y_j}{\sqrt{(x-\alpha_j)(x-\beta_j)}},$$

where $y_j \in [\alpha_j, \beta_j]$ for each j.

Using the relation

$$(a'_0)^2 m^+(x) - 1/m^-(x) = -1/G(x),$$

it follows that every $y_j \in (\alpha_j, \beta_j)$ is a pole of either m^+ or $1/m^-$. As m^+ and $1/m^-$ have no common poles, this in turn allows us to define a map $\mathcal{T}_E \to \mathcal{D}_E$.

The universal covering map $x : \mathbb{D} \to \Omega$ (= $\overline{\mathbb{C}} \setminus E$) is onto but only locally one-to-one.

The universal covering map $\mathbf{x} : \mathbb{D} \to \Omega$ $(= \overline{\mathbb{C}} \setminus E)$ is onto but only locally one-to-one.

Associated with x is a Fuchsian group $\Gamma_{\rm E}$ of Möbius transformations on $\mathbb D$ such that

$$\mathbf{x}(z) = \mathbf{x}(w) \iff \exists \gamma \in \Gamma_{\mathbf{E}} : z = \gamma(w).$$

The universal covering map $\mathbf{x}: \mathbb{D} \to \boldsymbol{\Omega}$ $(=\overline{\mathbb{C}} \setminus E)$ is onto but only locally one-to-one.

Associated with x is a Fuchsian group \varGamma_E of Möbius transformations on $\mathbb D$ such that

$$\mathbf{x}(z) = \mathbf{x}(w) \iff \exists \gamma \in \Gamma_{\mathbf{E}} : z = \gamma(w).$$

 $\Gamma_{\rm E}$ is isomorphic to the fundamental group $\pi_1(\Omega)$ and hence a free group on as many generators as the number of gaps in E.

The universal covering map $\mathbf{x}: \mathbb{D} \to \boldsymbol{\Omega}$ $(=\overline{\mathbb{C}} \setminus E)$ is onto but only locally one-to-one.

Associated with x is a Fuchsian group \varGamma_E of Möbius transformations on $\mathbb D$ such that

$$\mathbf{x}(z) = \mathbf{x}(w) \iff \exists \gamma \in \Gamma_{\mathbf{E}} : z = \gamma(w).$$

 $\Gamma_{\rm E}$ is isomorphic to the fundamental group $\pi_1(\Omega)$ and hence a free group on as many generators as the number of gaps in E.

We denote by $\Gamma_{\rm E}^*$ the multiplicative group of *unimodular characters* on $\Gamma_{\rm E}$ and equip it with the topology dual to the discrete one.

The universal covering map $\mathbf{x}: \mathbb{D} \to \boldsymbol{\Omega}$ $(=\overline{\mathbb{C}} \setminus E)$ is onto but only locally one-to-one.

Associated with x is a Fuchsian group Γ_E of Möbius transformations on $\mathbb D$ such that

$$\mathbf{x}(z) = \mathbf{x}(w) \iff \exists \gamma \in \Gamma_{\mathbf{E}} : z = \gamma(w).$$

 $\Gamma_{\rm E}$ is isomorphic to the fundamental group $\pi_1(\Omega)$ and hence a free group on as many generators as the number of gaps in E.

We denote by $\Gamma_{\rm E}^*$ the multiplicative group of *unimodular characters* on $\Gamma_{\rm E}$ and equip it with the topology dual to the discrete one.

Since an element in $\Gamma_{\rm E}^*$ is determined by its values on the generators of $\Gamma_{\rm E}$, we can think of $\Gamma_{\rm E}^*$ as a compact torus (which is infinite dimensional when Ω is infinitely connected).

The Abel map $\mathcal{D}_E \to \Gamma_E^{\,*}$, usually defined via Abelian integrals, is well-defined and continuous when E is a PW set.

The Abel map $\mathcal{D}_E \to \Gamma_E^*$, usually defined via Abelian integrals, is well-defined and continuous when E is a PW set.

A key result of Sodin-Yuditskii states that the maps

$$\mathcal{T}_{\mathsf{E}} \longrightarrow \mathcal{D}_{\mathsf{E}} \longrightarrow \Gamma_{\mathsf{E}}^{*}$$

are homeomorphisms when the direct Cauchy theorem holds.[†]

^TIn fact, the Abel map is bijective if and only if DCT holds.

The Abel map $\mathcal{D}_E \to \Gamma_E^*$, usually defined via Abelian integrals, is well-defined and continuous when E is a PW set.

A key result of Sodin-Yuditskii states that the maps

$$\mathcal{T}_{\mathsf{E}} \longrightarrow \mathcal{D}_{\mathsf{E}} \longrightarrow \Gamma_{\mathsf{E}}^{*}$$

are homeomorphisms when the *direct Cauchy theorem* holds.[†]

Here, the topology on \mathcal{T}_E is induced by operator norm and every point in \mathcal{T}_E has *almost periodic* Jacobi parameters.

^TIn fact, the Abel map is bijective if and only if DCT holds.

The Abel map $\mathcal{D}_E \to \Gamma_E^*$, usually defined via Abelian integrals, is well-defined and continuous when E is a PW set.

A key result of Sodin-Yuditskii states that the maps

$$\mathcal{T}_{\mathsf{E}} \longrightarrow \mathcal{D}_{\mathsf{E}} \longrightarrow \Gamma_{\mathsf{E}}^{*}$$

are homeomorphisms when the *direct Cauchy theorem* holds.[†]

Here, the topology on \mathcal{T}_E is induced by operator norm and every point in \mathcal{T}_E has *almost periodic* Jacobi parameters.

There exist PW sets for which DCT fails, but PW with DCT is still more general than homogeneous.

^TIn fact, the Abel map is bijective if and only if DCT holds.

The Abel map $\mathcal{D}_E \to \Gamma_E^*$, usually defined via Abelian integrals, is well-defined and continuous when E is a PW set.

A key result of Sodin-Yuditskii states that the maps

$$\mathcal{T}_{\mathsf{E}} \longrightarrow \mathcal{D}_{\mathsf{E}} \longrightarrow \Gamma_{\mathsf{E}}^{*}$$

are homeomorphisms when the *direct Cauchy theorem* holds.[†]

Here, the topology on \mathcal{T}_E is induced by operator norm and every point in \mathcal{T}_E has *almost periodic* Jacobi parameters.

There exist PW sets for which DCT fails, but PW with DCT is still more general than homogeneous.

From our point of view, the map $\mathcal{T}_{E} \to \Gamma_{E}^{*}$ is given by the character of the *Jost function* of *J* (to be defined shortly).

[†]In fact, the Abel map is bijective if and only if DCT holds.

To every $w \in \mathbb{D}$, we associated the blaschke product

$$B(z,w) = \prod_{\gamma \in \Gamma_{\rm E}} \frac{|\gamma(w)|}{\gamma(w)} \frac{\gamma(w) - z}{1 - \overline{\gamma(w)}z}$$

To every $w \in \mathbb{D}$, we associated the blaschke product

$$B(z,w) = \prod_{\gamma \in \Gamma_{\mathbf{E}}} \frac{|\gamma(w)|}{\gamma(w)} \frac{\gamma(w) - z}{1 - \overline{\gamma(w)}z}$$

Not only is $B(\cdot, w)$ analytic on \mathbb{D} with simple zeros at $\{\gamma(w)\}_{\gamma \in \Gamma_{\mathsf{E}}}$, it is also *character automorphic*.

To every $w \in \mathbb{D}$, we associated the blaschke product

$$B(z,w) = \prod_{\gamma \in \Gamma_{\mathbf{E}}} \frac{|\gamma(w)|}{\gamma(w)} \frac{\gamma(w) - z}{1 - \overline{\gamma(w)}z}$$

Not only is $B(\cdot, w)$ analytic on \mathbb{D} with simple zeros at $\{\gamma(w)\}_{\gamma \in \Gamma_{\mathsf{E}}}$, it is also *character automorphic*.

This means there is a character $\chi_{\rm w}$ in $\varGamma_{\rm E}^{\, \star}$ such that

$$B(\gamma(z), w) = \chi_w(\gamma)B(z, w).$$

To every $w \in \mathbb{D}$, we associated the blaschke product

$$B(z,w) = \prod_{\gamma \in \Gamma_{\rm E}} \frac{|\gamma(w)|}{\gamma(w)} \frac{\gamma(w) - z}{1 - \overline{\gamma(w)}z}$$

Not only is $B(\cdot, w)$ analytic on \mathbb{D} with simple zeros at $\{\gamma(w)\}_{\gamma \in \Gamma_{\mathsf{E}}}$, it is also *character automorphic*.

This means there is a character $\chi_{\rm w}$ in $\varGamma_{\rm E}^{\,\star}$ such that

$$B(\gamma(z),w) = \chi_w(\gamma)B(z,w).$$

In particular, the character of $B(z) \coloneqq B(z,0)$ is given by

$$\chi_{o}(\gamma_{j}) = \exp\{2\pi i \cdot \mu_{\mathbf{E}}([\beta_{j},\beta])\}$$

for a suitable choice $\{\gamma_j\}$ of generators of Γ_{E} .

To every $w \in \mathbb{D}$, we associated the blaschke product

$$B(z,w) = \prod_{\gamma \in \Gamma_{\rm E}} \frac{|\gamma(w)|}{\gamma(w)} \frac{\gamma(w) - z}{1 - \overline{\gamma(w)}z}$$

Not only is $B(\cdot, w)$ analytic on \mathbb{D} with simple zeros at $\{\gamma(w)\}_{\gamma \in \Gamma_{\mathsf{E}}}$, it is also *character automorphic*.

This means there is a character $\chi_{\rm w}$ in $\varGamma_{\rm E}^{\,\star}$ such that

$$B(\gamma(z),w) = \chi_w(\gamma)B(z,w).$$

In particular, the character of $B(z) \coloneqq B(z, 0)$ is given by

$$\chi_{o}(\gamma_{j}) = \exp\{2\pi i \cdot \mu_{E}([\beta_{j},\beta])\}$$

for a suitable choice $\{\gamma_j\}$ of generators of $\Gamma_{\mathbf{E}}$.

We mention in passing that $g(\mathbf{x}(z)) = -\log|B(z)|$.

The direct Cauchy theorem

As before, let $\{c_j\}$ denote the critical points of g (the Green's function for Ω with pole at ∞).

Merikuke Hassmi Hardy Classes on Infinitely Connected Riemann Surfaces

The direct Cauchy theorem

As before, let $\{c_j\}$ denote the critical points of g (the Green's function for Ω with pole at ∞).

Pick $w_j \in \mathbb{D}$ such that $\mathbf{x}(w_j) = c_j$ and form the blaschke product $c(z) = \prod_i B(z, w_j).$

The direct Cauchy theorem

As before, let $\{c_j\}$ denote the critical points of g (the Green's function for Ω with pole at ∞).

Pick $w_j \in \mathbb{D}$ such that $\mathbf{x}(w_j) = c_j$ and form the blaschke product $c(z) = \prod_j B(z, w_j).$

When E is a PW set, this product converges to a character automorphic function on \mathbb{D} with character χ_c .

The direct Cauchy theorem

As before, let $\{c_j\}$ denote the critical points of g (the Green's function for Ω with pole at ∞).

Pick $w_j \in \mathbb{D}$ such that $\mathbf{x}(w_j) = c_j$ and form the blaschke product $c(z) = \prod_j B(z, w_j).$

When E is a PW set, this product converges to a character automorphic function on \mathbb{D} with character χ_c .

Definition

The direct Cauchy theorem (DCT) is said to hold if

$$\int_0^{2\pi} \frac{\varphi(e^{i\theta})}{c(e^{i\theta})} \frac{d\theta}{2\pi} = \frac{\varphi(0)}{c(0)}$$

whenever $\varphi \in H^1(\mathbb{D})$ is character automorphic and $\chi_{\varphi} = \chi_c$.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose that $J = \{a_n, b_n\}_{n=1}^{\infty}$ belongs to the Szegő class for E. Then there is a unique $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ in \mathcal{T}_E such that $|a_n - a'_n| + |b_n - b'_n| \to 0.$

Consequently, a_n and b_n are asymptotically almost periodic.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose that $J = \{a_n, b_n\}_{n=1}^{\infty}$ belongs to the Szegő class for E. Then there is a unique $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ in \mathcal{T}_E such that $|a_n - a'_n| + |b_n - b'_n| \rightarrow 0.$ Consequently, a_n and b_n are asymptotically almost periodic. Moreover, if $d\mu'$ is the spectral measure of J' restricted to $\ell^2(\mathbb{N})$, then $P_n(x, d\mu) / P_n(x, d\mu')$

has a limit for all $x \in \overline{\mathbb{C}} \setminus \mathbb{R}$.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose that $J = \{a_n, b_n\}_{n=1}^{\infty}$ belongs to the Szegő class for E. Then there is a unique $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ in \mathcal{T}_E such that $|a_n - a'_n| + |b_n - b'_n| \rightarrow 0.$ Consequently, a_n and b_n are asymptotically almost periodic.

Moreover, if $d\mu'$ is the spectral measure of J' restricted to $\ell^2(\mathbb{N})$, then $P(x, d\mu) / P(x, d\mu')$

 $P_n(x,d\mu)/P_n(x,d\mu')$

has a limit for all $x \in \overline{\mathbb{C}} \setminus \mathbb{R}$.

Hence, $\prod (a_n/a'_n)$ and $\sum (b_n - b'_n)$ converge conditionally.

The Jost function

Let us introduce the key player for polynomial asymptotics.

The Jost function

Let us introduce the key player for polynomial asymptotics.

Definition

Given $J \in Sz(E)$, we define the *Jost function* by

$$u(z;J) = \prod_{k} B(z,p_{k}) \exp\left\{-\frac{1}{2} \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log f(\mathbf{x}(e^{i\theta})) \frac{d\theta}{2\pi}\right\},\$$

where the p_k 's are chosen in such a way that $\mathbf{x}(p_k) = x_k$, the eigenvalues of J in $\mathbb{R} \setminus \mathbb{E}$.

The Jost function

Let us introduce the key player for polynomial asymptotics.

Definition

Given $J \in Sz(E)$, we define the *Jost function* by

$$u(z; J) = \prod_{k} B(z, p_{k}) \exp\left\{-\frac{1}{2} \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log f(\mathbf{x}(e^{i\theta})) \frac{d\theta}{2\pi}\right\},\$$

where the p_k 's are chosen in such a way that $\mathbf{x}(p_k) = x_k$, the eigenvalues of J in $\mathbb{R} \setminus \mathbb{E}$.

The Jost function is analytic on \mathbb{D} and one can show that it is also *character automorphic*, that is,

$$\exists \chi \in \Gamma_{\mathsf{E}}^* : u(\gamma(z); J) = \chi(\gamma) u(z; J) \text{ for all } \gamma \in \Gamma_{\mathsf{E}}.$$

As for notation, we denote by $\chi(J)$ the character of J.

Elements of the proof

The proof of the first part relies on three important results:

Elements of the proof

The proof of the first part relies on three important results:

1 the Denisov-Rakhmanov-Remling theorem

— any right limit of J belongs to \mathcal{T}_{E}

Elements of the proof

The proof of the first part relies on three important results:

the Denisov–Rakhmanov–Remling theorem

— any right limit of J belongs to \mathcal{T}_{E}

② the Jost isomorphism of Sodin and Yuditskii — the map $\mathcal{T}_{\mathsf{E}} \ni J' \mapsto \chi(J') \in \Gamma_{\mathsf{E}}^*$ is a homeomorphism

Elements of the proof

The proof of the first part relies on three important results:

- the Denisov-Rakhmanov-Remling theorem
 - any right limit of J belongs to \mathcal{T}_{E}
- 2 the Jost isomorphism of Sodin and Yuditskii
 the map T_E ∋ J' → χ(J') ∈ Γ_E^{*} is a homeomorphism
- the Jost asymptotics for right limits $\text{ if } J_{m_l} \xrightarrow{\text{str.}} J' \in \mathcal{T}_{E}, \text{ then } \chi(J|_{m_l}) \to \chi(J')$

Let J' be the unique element in \mathcal{T}_{E} for which $\chi(J') = \chi(J)$.

Let J' be the unique element in T_E for which $\chi(J') = \chi(J)$. For contradiction, suppose that

$$|a_n-a'_n|+|b_n-b'_n| \to 0.$$

Let J' be the unique element in \mathcal{T}_E for which $\chi(J') = \chi(J)$. For contradiction, suppose that

$$|a_n-a'_n|+|b_n-b'_n| \longrightarrow 0.$$

Then there is a subsequence $\{m_l\}$ so that J and J' have different right limits, say $K \neq K'$.

Let J' be the unique element in \mathcal{T}_E for which $\chi(J') = \chi(J)$. For contradiction, suppose that

$$|a_n-a_n'|+|b_n-b_n'| \rightarrow 0.$$

Then there is a subsequence $\{m_l\}$ so that J and J' have different right limits, say $K \neq K'$.

According to Remling's theorem, both K and K' lie in \mathcal{T}_E .

Let J' be the unique element in \mathcal{T}_E for which $\chi(J') = \chi(J)$. For contradiction, suppose that

$$|a_n-a'_n|+|b_n-b'_n| \longrightarrow 0.$$

Then there is a subsequence $\{m_l\}$ so that J and J' have different right limits, say $K \neq K'$.

According to Remling's theorem, both ${\mathcal K}$ and ${\mathcal K}'$ lie in ${\mathcal T}_E.$

Moreover, by Jost asymptotics for right limits, we have

$$\chi(J|_{m_l}) \longrightarrow \chi(K) \text{ and } \chi(J'_{m_l}) \longrightarrow \chi(K').$$

Let J' be the unique element in \mathcal{T}_E for which $\chi(J') = \chi(J)$. For contradiction, suppose that

$$|a_n-a'_n|+|b_n-b'_n| \longrightarrow 0.$$

Then there is a subsequence $\{m_l\}$ so that J and J' have different right limits, say $K \neq K'$.

According to Remling's theorem, both K and K' lie in \mathcal{T}_{E} .

Moreover, by Jost asymptotics for right limits, we have

$$\chi(J|_{m_l}) \longrightarrow \chi(K) \text{ and } \chi(J'_{m_l}) \longrightarrow \chi(K').$$

Since $\chi(J) = \chi(J')$, we also have $\chi(J|_m) = \chi(J'_m)$ for each m.

Let J' be the unique element in \mathcal{T}_E for which $\chi(J') = \chi(J)$. For contradiction, suppose that

$$|a_n-a'_n|+|b_n-b'_n| \longrightarrow 0.$$

Then there is a subsequence $\{m_l\}$ so that J and J' have different right limits, say $K \neq K'$.

According to Remling's theorem, both K and K' lie in T_E . Moreover, by Jost asymptotics for right limits, we have

$$\chi(J|_{m_l}) \longrightarrow \chi(K) \text{ and } \chi(J'_{m_l}) \longrightarrow \chi(K').$$

Since $\chi(J) = \chi(J')$, we also have $\chi(J|_m) = \chi(J'_m)$ for each m. So $\chi(K) = \chi(K')$ and hence K = K' by the Jost isomorphism.

The Jost solution defined by $u_n(z; J) = a_n^{-1}B(z)^n u(z; J|_n)$ satisfies the same three-term recurrence relation as P_{n-1} .

The Jost solution defined by $u_n(z; J) = a_n^{-1}B(z)^n u(z; J|_n)$ satisfies the same three-term recurrence relation as P_{n-1} .

So we can write the diagonal Green's function as

 $G_{nn}(\mathbf{x}(z), d\mu) = P_{n-1}(\mathbf{x}(z), d\mu)u_n(z; J)/Wr(z),$

where Wr(z) is the Wronskian which is equal to -u(z; J).

The Jost solution defined by $u_n(z; J) = a_n^{-1}B(z)^n u(z; J|_n)$ satisfies the same three-term recurrence relation as P_{n-1} .

So we can write the diagonal Green's function as

$$G_{nn}(\mathbf{x}(z), d\mu) = P_{n-1}(\mathbf{x}(z), d\mu)u_n(z; J)/Wr(z),$$

where Wr(z) is the Wronskian which is equal to -u(z; J). Now,

$$\frac{P_{n-1}(\mathbf{x}(z), d\mu)}{P_{n-1}(\mathbf{x}(z), d\mu')} = \frac{G_{nn}(\mathbf{x}(z), d\mu)}{G_{nn}(\mathbf{x}(z), d\mu')} \frac{u_n(z; J')}{u_n(z; J)} \frac{u(z; J)}{u(z; J')}$$

The Jost solution defined by $u_n(z; J) = a_n^{-1}B(z)^n u(z; J|_n)$ satisfies the same three-term recurrence relation as P_{n-1} .

So we can write the diagonal Green's function as

$$G_{nn}(\mathbf{x}(z), d\mu) = P_{n-1}(\mathbf{x}(z), d\mu)u_n(z; J)/Wr(z),$$

where Wr(z) is the Wronskian which is equal to -u(z; J). Now,

$$\frac{P_{n-1}(\mathbf{x}(z), d\mu)}{P_{n-1}(\mathbf{x}(z), d\mu')} = \frac{G_{nn}(\mathbf{x}(z), d\mu)}{G_{nn}(\mathbf{x}(z), d\mu')} \frac{u_n(z; J')}{u_n(z; J)} \frac{u(z; J)}{u(z; J')}.$$

By use of the resolvent formula and since $J_n - J'_n \rightarrow 0$, the ratio of G_{nn} 's converges to 1. As J and J' have the same right limits, the ratio of u_n 's also converges to 1.

Polynomial asymptotics

The proof shows that

$$\frac{P_n(\mathbf{x}(z), d\mu)}{P_n(\mathbf{x}(z), d\mu')} \longrightarrow \frac{u(z; J)}{u(z; J')}$$

locally uniformly on $\mathbb{F}^{\mathrm{int}}$, a fundamental domain for $\varGamma_{\mathsf{E}}.$

Polynomial asymptotics

The proof shows that

$$\frac{P_n(\mathbf{x}(z), d\mu)}{P_n(\mathbf{x}(z), d\mu')} \longrightarrow \frac{u(z; J)}{u(z; J')}$$

locally uniformly on $\mathbb{F}^{\mathrm{int}}$, a fundamental domain for $\varGamma_{\mathsf{E}}.$

The orthonormal polynomials associated with points in \mathcal{T}_{E} behave like

$$a'_{n}B(z)^{n}P_{n}(\mathbf{x}(z),d\mu') \sim u(z;d\mu')u(z;d\mu',r),$$

where $J'^{,r}$ is the matrix given by

$$a'_{n}{}^{r} = a'_{-n-1}, \ b'_{n}{}^{r} = b'_{-n} \ \text{ for } n \in \mathbb{Z}.$$

Polynomial asymptotics

The proof shows that

$$\frac{P_n(\mathbf{x}(z), d\mu)}{P_n(\mathbf{x}(z), d\mu')} \longrightarrow \frac{u(z; J)}{u(z; J')}$$

locally uniformly on $\mathbb{F}^{\mathrm{int}}$, a fundamental domain for $\varGamma_{\mathsf{E}}.$

The orthonormal polynomials associated with points in \mathcal{T}_{E} behave like

$$a'_{n}B(z)^{n}P_{n}(\mathbf{x}(z),d\mu') \sim u(z;d\mu')u(z;d\mu',r),$$

where $J'^{,r}$ is the matrix given by

$$a'_{n}{}^{r} = a'_{-n-1}, \ b'_{n}{}^{r} = b'_{-n} \ \text{ for } n \in \mathbb{Z}.$$

In conclusion, we have

$$a_n B(z)^n P_n(\mathbf{x}(z), d\mu) \sim u(z; d\mu) u(z; d\mu'^{,r}_{-n-1}).$$

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ is a matrix in \mathcal{T}_E and $J = \{a_n, b_n\}_{n=1}^{\infty}$ is an arbitrary Jacobi matrix.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ is a matrix in \mathcal{T}_E and $J = \{a_n, b_n\}_{n=1}^{\infty}$ is an arbitrary Jacobi matrix.

Conjecture: If $\sum |a_n - a'_n| + |b_n - b'_n| < \infty$, then J belongs to the Szegő class for E.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ is a matrix in \mathcal{T}_E and $J = \{a_n, b_n\}_{n=1}^{\infty}$ is an arbitrary Jacobi matrix.

Conjecture: If $\sum |a_n - a'_n| + |b_n - b'_n| < \infty$, then J belongs to the Szegő class for E.

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ is a matrix in \mathcal{T}_E and $J = \{a_n, b_n\}_{n=1}^{\infty}$ is an arbitrary Jacobi matrix.

Conjecture: If $\sum |a_n - a'_n| + |b_n - b'_n| < \infty$, then J belongs to the Szegő class for E.

Open question: If $\sum (a_n - a'_n)^2 + (b_n - b'_n)^2 < \infty$ for some J', what can we say about J?

Let $E \subset \mathbb{R}$ be a Parreau–Widom set and assume that the direct Cauchy theorem holds.

Suppose $J' = \{a'_n, b'_n\}_{n=-\infty}^{\infty}$ is a matrix in \mathcal{T}_E and $J = \{a_n, b_n\}_{n=1}^{\infty}$ is an arbitrary Jacobi matrix.

Conjecture: If $\sum |a_n - a'_n| + |b_n - b'_n| < \infty$, then J belongs to the Szegő class for E.

Open question: If $\sum (a_n - a'_n)^2 + (b_n - b'_n)^2 < \infty$ for some J', what can we say about J?

Open question: Is it possible to characterize all ℓ^2 -perturbations of $\overline{\mathcal{T}_E}$ through their spectral measures?

Thank you very much for your attention!