The Calabi-Yau Landscape

YANG-HUI HE

何楊輝

Dept of Mathematics, City, University of London Merton College, University of Oxford School of Physics, NanKai University

Institut Confucius, Genève 日内瓦孔子學院 幾何、量子拓撲與漸進分析; 2018六月

Image: A math a math

- Relation between curvature (differential geometry) and characteristic classes (algebraic geometry)?
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω) and $([R] = [c_1(M)])_{H^{1,1}(M)}$. Ceconetric Nomenclature Then $\exists ! (\tilde{g}, \tilde{\omega})$ such that $([\omega] = [\tilde{\omega}])_{H^2(M;\mathbb{R})}$ and $Ricci(\tilde{\omega}) = R$.
- **Rmk**: $c_1(M) = 0 \Leftrightarrow \mathsf{Ricci-flat}$
 - THEOREM [S-T Yau, 1977-8; Fields 1982] Calabi-Yau: Kähler and Ricci-flat
 - Important example: $\dim_{\mathbb{C}} = 1$, T^2 (elliptic curve)

イロト イポト イヨト イヨト

A Opportune Development in Physics

String Theory:

The most important equation: 10 =

$$10 = 4 + 6$$

YANG-HUI HE (London/Oxford/Tianjin)

・ロト ・回ト ・ヨト ・

String Phenomenology

- Superstring: unifies QM + GR in 10 dimensions: X^{10}
- We live in some M^4 (assume maximally symmetric)

$$R_{\mu\nu\rho\lambda} = \frac{R}{12}(g_{\mu\rho}g_{\nu\lambda} - g_{\mu\lambda}g_{\nu\rho}), \qquad R \begin{cases} = 0 & \text{Minkowski} \\ > 0 & \text{de Sitter (dS)} \\ < 0 & \text{anti-de Sitter (AdS)} \end{cases}$$

- 10 = 4 + 6: two scenarios
 - **③** SMALL: compactification $X^{10} \simeq M^4 \times X^6$
 - LARGE: brane-world trapped on a 3-brane in 10-D
- want: supersymmetry at intermediate scale (between string and EW)
- want: classical vacuum of string theory on X^{10} preserves $\mathcal{N} = 1$ SUSY in M^4

A D > A B > A B >

[Candelas-Horowitz-Strominger-Witten] (1986):
$$\delta_{SUSY}S_{Het} = 0$$

• $S \sim \int d^{10}x \sqrt{g} e^{-2\Phi} \left[R + 4\partial_{\mu}\Phi\partial^{\mu}\Phi - \frac{1}{2}|H'_3|^2 \right) - \frac{1}{g_s^2} \operatorname{Tr}|F_2|^2 \right] + \text{SUSY}$)

gravitino	$\delta_{\epsilon}\Psi_{M=1,\dots,10} = \nabla_M \epsilon - \frac{1}{4} H_M^{(3)} \epsilon$
dilatino	$\delta_{\epsilon}\lambda = -\frac{1}{2}\Gamma^{M}\partial_{M}\Phi \ \epsilon + \frac{1}{4}H_{M}^{(3)}\epsilon$
adjoint YM	$\delta_{\epsilon}\chi = -\frac{1}{2}F^{(2)}\epsilon$
Bianchi	$dH^{(3)} = \frac{\alpha'}{4} [\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F)]$

• Assume $H^{(3)} = 0$ (can generalise) \rightsquigarrow Killing spinor equation:

 $\delta_{\epsilon} \Psi_{M=1,...,10} = \nabla_M \epsilon = 0 = \nabla_M \xi(x^{\mu=1,...,4}) \eta(y^{m=1,...,6})$

- External 4D Space: $[\nabla_{\mu}, \nabla_{\nu}]\xi(x) = \frac{1}{4}R_{\mu\nu\rho\sigma}\Gamma^{\rho\sigma}\xi(x) = 0 \rightsquigarrow R = 0 \Rightarrow M$ is Minkowski (actually the universe is now believed to be dS)
- Internal 6D Space: $R_{mn} = 0$ (but not necessarily max symmetric)

- X^6 as a spin 6-manifold: holonomy group is $SO(6) \simeq SU(4)$
 - want covariant constant spinor: largest possible is $SU(4) \rightarrow SU(3)$ with $4 \rightarrow 3 \oplus 1 \Rightarrow X^6$ has SU(3) holonomy
 - Thus $\epsilon(x^{1,\ldots,4},y^{1,\ldots,6})=\xi_+\otimes\eta_+(y)+\xi_-\otimes\eta_-(y)$

with $\eta^*_+ = \eta_-$ and ξ constant

- Define $J^n_m=i\eta^\dagger_+\gamma^n_m\eta_+=-i\eta^\dagger_-\gamma^n_m\eta_-$, check: $J^n_mJ^p_n=-\delta^n_m$
- Can show X^6 is a Kähler manifold of dim $_{\mathbb{C}}=3$, with SU(3) holonomy

• Three other SUSY variation equations (recall ${\cal H}^{(3)}=0$ by choice)

- choose constant dilation $\Phi \rightsquigarrow \delta_{\epsilon} = 0$
- choose R = F (spin connection for gauge field): Bianchi satisfied
- Also R = 0 so $\delta_{\epsilon} \chi = 0$

イロト イヨト イヨト イヨト

 $\bullet\,$ For a Riemannian, spin manifold M of real dimension d, holonomy is Spin(d)

as double cover of $SO(d)\ {\it generically},$ but could have ${\it special\ holonomy}$

${\sf Holonomy}\;{\cal H}\subset$	Manifold Type (IFF)
U(d/2)	Kähler
SU(d/2)	Calabi-Yau
Sp(d/4)	Hyper-Kähler
$Sp(d/4) \times Sp(1)$	Quaternionic-Kähler

• X^6 is Calabi-Yau

• no-where vanishing holomorphic 3-form: $\Omega^{(3,0)} = \frac{1}{3!}\Omega_{mnp}dz^m \wedge dz^n \wedge dz^p$ with $\Omega_{mnp} := \eta_-^T \gamma^{[m}\gamma^n\gamma^{p]} \eta_-$

check: $d\Omega = 0$ but not exact; $\Omega \wedge \bar{\Omega} \sim$ Volume form

A D > A B > A B >

Some equivalent Definitions for X^6 Calabi-Yau Threefold

- Kähler, $c_1(TX) = 0$
- Kähler, vanishing Ricci curvature
- Kähler, holonomy $\subset SU(n)$
- Kähler, nowhere vanishing global holomorphic 3-form (volume)
- Covariant constant spinor
- Canonical bundle (sheaf) $K_X := \bigwedge^n T_X^* \simeq \mathcal{O}_X$
- low-energy SUSY in 4D from string compactification

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Some Topological Properties I

- Hodge Numbers $h^{p,q}(X) = \dim H^{p,q}_{\bar{\partial}}(X)$
 - Hodge decomposition and Betti Numbers: $b_k = \sum_{p+q=k} h^{p,q}(X)$

 $h^{0,0}$

- Complex conjugation $\rightsquigarrow h^{p,q} = h^{q,p}$
- Hodge star (Poincaré) $\rightsquigarrow h^{p,q} = h^{n-p,n-q}$
- Hodge Diamond: $h^{0,1}$ $h^{0,1}$ $h^{0,1}$ $h^{0,1}$ $h^{0,1}$ $h^{0,2}$ $h^{1,1}$ $h^{2,1}$ $h^{2,1}$ $h^{2,1}$ $h^{2,1}$ $h^{0,2}$ $h^{0,3}$ $h^{0,1}$ $h^{0,1}$ $h^{0,2}$ $h^{0,1}$ $h^{0,2}$
- Compact, connected, Kähler: $h^{0,0} = 1$ (constant functions)
- If simply-connected:

 $\pi_1(X) = 0 \rightsquigarrow H_1(X) = \pi_1(X)/[,] = 0 \rightsquigarrow h^{1,0} = h^{0,1} = 0$

- Finally, CY3 has $h^{3,0} = h^{0,3} = 1$ [unique holomorphic 3-form], also $h^{p,0} = h^{3-p,0}$ by contracting (p,0)-form with $\overline{\Omega}$ to give (p,3)-form, then use Poincaré duality to give (3-p,0)-form
- 2-topological numbers for a (connected, simply connected) CY3:

• Moduli Space of CY3 locally: $\mathcal{M} \simeq \mathcal{M}^{2,1} \times \mathcal{M}^{1,1}$

ADEA

Explicit Examples of Calabi-Yau Manifolds

• d = 1 Torus $T^2 = S^1 \times S^1$

4-torus:
$$T^4 = (S^1)^4$$

• d = 3 CY3: Unclassified, billions known

Explicit Examples of Calabi-Yau Manifolds

•
$$d = 1$$
 Torus $T^2 = S^1 \times S^2$

4-torus:
$$T^4 = \left(S^1\right)^4$$

• d = 3 CY3: Unclassified, billions known

Explicit Examples of Calabi-Yau Manifolds

•
$$d = 1$$
 Torus $T^2 = S^1 \times S^1$

4-torus:
$$T^4 = \left(S^1\right)^4$$

• d = 3 CY3: Unclassified, billions known

As Projective Varieties

• Embed X into \mathbb{P}^n as **complete intersection** of K polynomials

$$n = K + 3$$

- Canonical bundle $\mathcal{K}_X \simeq \wedge^{\dim(X)} T_X^*$; algebraic condition for Calabi-Yau: $K_X \simeq \mathcal{O}_X$ (indeed $c_1(TX) = 0$)
- Adjunction formula for subvariety $X \subset A$: $\mathcal{K}_X = (K_A \otimes N^*)|_X$
- Recall $K_{A=\mathbb{P}^n} \simeq \mathcal{O}_{\mathbb{P}^n}(-n-1)$ and $K_X \simeq \mathcal{O}_X$, thus:

$$\mathsf{degree}(X) = n + 1$$

Find only 5 solutions. These all have h^{1,1}(X) = 1, inherited from the 1
 Kähler class of ℙⁿ; called cyclic Calabi-Yau threefolds

	Intersection	\mathcal{A}	Configuration	$\chi(X)$	$h^{1,1}(X)$	$h^{2,1}(X)$	d(X)	$\tilde{c}_2(TX)$
	Quintic	\mathbb{P}^4	[4 5]	-200	1	101	5	10
	Quadric and quartic	\mathbb{P}^5	$[5 2 \ 4]$	-176	1	89	8	7
·	Two cubics	\mathbb{P}^5	[5 3 3]	-144	1	73	9	6
	Cubic and 2 quadrics	\mathbb{P}^6	$[6 3\ 2\ 2]$	-144	1	73	12	5
	Four quadrics	\mathbb{P}^7	$[7 2\ 2\ 2\ 2]$	-128	1	65	16	4

• Euler numbers quite large, $d(\boldsymbol{X})$ is volume normalisation

- used standard matrix configuration notation
- most famous example: Quintic 3-fold [4|5]

$$\{\sum_{i=0}^{4} x_i^5 = 0\} \subset \mathbb{P}^4_{[x_0:\dots x_4]}$$

written as Fermat quintic, also has $h^{2,1}(X) = 101$ deformation parameters

・ロト ・回ト ・ヨト ・

Strings and the Compact Calabi-Yau Landscape

* ロ > * 個 > * 注 >

Triadophilia: A 20-year search

• A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)

- $E_8 \supset SU(3) \times SU(2) \times U(1)$ Natural Gauge Unification
- Mathematically succinct
- Witten: "still the best hope for the real world"
- CY3 X, tangent bundle SU(3) ⇒ E₆ GUT: commutant E₈ → SU(3) × E₆ (generalize later)
- Particle Spectrum: Generation Anti-Generation $n_{27} = h^1(X, TX) = h_{\overline{\partial}}^{2,1}(X)$ $n_{\overline{27}} = h^1(X, TX^*) = h_{\overline{\partial}}^{1,1}(X)$ • Net-generation: $\chi = 2(h^{1,1} - h^{2,1})$
- Question: Are there Calabi-Yau threefolds with Euler character $\pm 6?$

イロト 不得下 イヨト イヨト

Triadophilia: A 20-year search

• A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)

- $E_8 \supset SU(3) \times SU(2) \times U(1)$ Natural Gauge Unification
- Mathematically succinct
- Witten: "still the best hope for the real world"
- CY3 X, tangent bundle SU(3) ⇒ E₆ GUT: commutant E₈ → SU(3) × E₆ (generalize later)
- Particle Spectrum: Generation Anti-Generation $n_{27} = h^1(X, TX) = h^{2,1}_{\overline{\partial}}(X)$ • Net-generation: $\chi = 2(h^{1,1} - h^{2,1})$
- Question: Are there Calabi-Yau threefolds with Euler character $\pm 6?$

イロト イポト イヨト イヨ

Complete Intersection Calabi-Yau (CICY) 3-folds

- immediately: Quintic Q in \mathbb{P}^4 is CY3, recall: $Q_{\chi}^{h^{1,1},h^{2,1}} = Q_{-200}^{1,101}$ so too may generations (even with quotient $-200 \notin 3\mathbb{Z}$)
- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
 - dim(Ambient space) #(defining Eq.) = 3 (complete intersection)

$$M = \begin{bmatrix} n_1 & q_1^1 & q_1^2 & \dots & q_1^K \\ n_2 & q_2^1 & q_2^2 & \dots & q_2^K \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_m & q_m^1 & q_m^2 & \dots & q_m^K \end{bmatrix}_{m \times K} \begin{bmatrix} - & K \text{ eqns of multi-degree } q_j^i \in \mathbb{Z}_{\geq 0} \\ \text{embedded in } \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m} \\ - & c_1(X) = 0 \rightsquigarrow \sum_{j=1}^K q_r^j = n_r + 1 \\ m \times K & - & M^T \text{ also CICY} \end{bmatrix}$$

• Famous Examples

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The First Data-sets in Mathematical Physics/Geometry I

- Problem: *classify all configuration matrices*; employed the best computers at the time (**CERN supercomputer**)
 - q.v. magnetic tape and dot-matrix printout in Philip's office
 - 7890 matrices from 1×1 to max(row) = 12, max(col) = 15; with $q_i^i \in [0, 5]$
 - 266 distinct Hodge pairs $(h^{1,1}, h^{2,1}) = (1, 65), \dots, (19, 19)$
 - 70 distinct Euler $\chi \in [-200,0]$ (all negative)
 - [V. Braun, 1003.3235]: 195 have freely-acting symmetries (quotients), 37 different finite groups (from Z₂ to Z₈ ⋊ H₈)
- ${\ensuremath{\, \circ }}$ Rmk: Integration pulls back to ambient product of projective space A

$$\int_X \cdot = \int_A \mu \wedge \cdot , \qquad \mu := \bigwedge_{j=1}^K \left(\sum_{r=1}^m q_r^j J_r \right) \,.$$

A D > A P > A B > A

• Chern classes of CICY

$$c_{1}^{r}(T_{X}) = 0$$

$$c_{2}^{rs}(T_{X}) = \frac{1}{2} \begin{bmatrix} -\delta^{rs}(n_{r}+1) + \sum_{j=1}^{K} q_{j}^{r} q_{j}^{s} \\ \delta^{rst}(T_{X}) \end{bmatrix} = \frac{1}{3} \begin{bmatrix} \delta^{rst}(n_{r}+1) - \sum_{j=1}^{K} q_{j}^{r} q_{j}^{s} q_{j}^{t} \end{bmatrix}$$

- Triple intersection numbers: $d_{rst} = \int_X \cdot = \int_A J_r \wedge J_s \wedge J_t$
- Euler number: $\chi(X) = \text{Coefficient}(c_3^{rst}J_rJ_sJ_t \cdot \mu, \prod_{r=1}^m J_r^{n_r})$
- As always, computing individual terms $(h^{1,1},h^{2,1})$ hard even though $h^{1,1}-h^{2,1}=\frac{1}{2}\chi$ (index theorem)

Computing Hodge Numbers: Sketch

• Recall Hodge decomposition $H^{p,q}(X)\simeq H^q(X,\wedge^p T^\star X) \leadsto$

 $H^{1,1}(X) = H^1(X, T_X^*), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^*) \simeq H^1(X, T_X)$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

• Induces long exact sequence in cohomology:

• Need to compute Rk(d), cohomology and $H^i(X, T_A|_X)$ (Cf. Hübsch)

Distribution

・ロト ・回ト ・ヨト

[Candelas-Lynker-Schimmrigk, 1990] Hypersurfaces in Weighted \mathbb{P}^4

- generic homog deg = $\sum_{i=0}^{4} w_i$ polynomial in $W\mathbb{P}^4_{[w_0:w_1:w_2:w_3:w_4]} \simeq (\mathbb{C}^5 \{0\})/(x_0, x_1, x_2, x_3, x_4) \sim (\lambda^{w_0} x_0, \lambda^{w_1} x_1, \lambda^{w_2} x_2, \lambda^{w_3} x_3, \lambda^{w_4} x_4)$
- specified by a single integer 5-vector: w_i
- Rmk: ambient WP4 is singular (need to resolve)

7555 inequivalent 5-vectors w_i

2780 Hodge pairs

$$\chi \in [-971, 469]$$

was the first person with a tablet downloading data from the cloud The age of data science in mathematical physics/string theory not as recent as you might think

Elliptically Fibered CY3: [Gross, Morrison-Vafa, 1994]

• X elliptically fibered over some base B: as Weierstraß model in $\mathbb{P}^2_{[x:y:z]}$ -bundle over B (g_2 , g_3 complex structure coeff)

$$zy^2 = 4x^3 - g_2xz^2 - g_3z^3$$

 x, y, z, g_2, g_3 must be sections of powers of some line bundle $\mathcal L$ over B

- Specifically (x, y, z, g_2, g_3) are global sections of $(\mathcal{L}^{\oplus 2}, \mathcal{L}^{\oplus 3}, \mathcal{O}_B, \mathcal{L}^{\oplus 4}, \mathcal{L}^{\oplus 6})$
- $c_1(TX) = 0 \Rightarrow \mathcal{L} \simeq K_B^{-1} \Rightarrow B$ highly constrained :
 - del Pezzo surface $d\mathbb{P}_{r=1,\ldots,9}$: \mathbb{P}^2 blown up at r points
 - 2 Hirzebruch surface $\mathbb{F}_{r=0,...12}$: \mathbb{P}^1 -bundle over \mathbb{P}^1
 - Involution of K3
 - $\textcircled{9} Blowups of <math>\mathbb{F}_r$

・ロト ・ 日 ・ ・ ヨ ・ ・

Ne Plus Ultra: The Kreuzer-Skarke Dataset

- Generalize WP4, take Toric Variety $A(\Delta_n)$ and consider hypersurface therein
- $A(\Delta_n)$ is special: it is constructed from a reflexive polytope (Lattice Polytopes)
- THM [Batyrev-Borisov, '90s] anti-canonical divisor in $X(\Delta_n)$ gives a smooth Calabi-Yau (n-1)-fold as hypersurface:

$$0 = \sum_{\mathbf{m}\in\Delta} C_{\mathbf{m}} \prod_{\rho=1}^{k} x_{\rho}^{\langle \mathbf{m}, \mathbf{v}_{\rho} \rangle + 1} , \qquad \Delta^{\circ} = \{ \mathbf{v} \in \mathbb{R}^{4} \mid \langle \mathbf{m}, \mathbf{v} \rangle \ge -1 \ \forall \mathbf{m} \in \Delta \}$$

\mathbf{v}_{ρ} vertices of Δ .

• Simplest case: $A = \mathbb{P}^4$ and we have quintic [4|5] again.

	\mathbf{m}_1	=	(-1, -1, -1, -1),		\mathbf{v}_1	=	(1, 0, 0, 0),
	\mathbf{m}_2	=	(4, -1, -1, -1),		\mathbf{v}_2	=	(0, 1, 0, 0),
Δ :	\mathbf{m}_3	=	(-1, 4, -1, -1),	Δ° :	\mathbf{v}_3	=	(0, 0, 1, 0),
	\mathbf{m}_4	=	(-1, -1, 4, -1),		\mathbf{v}_4	=	(0, 0, 0, 1),
	\mathbf{m}_5	=	(-1, -1, -1, 4),		\mathbf{v}_5	=	(-1, -1, -1, -1) .

Reflexive Polygons: 16 special elliptic curves

- THM (classical): All Δ_2 are $GL(2;\mathbb{Z})$ equivalent to one of the 16
- \rightarrow #vertices: 3, ..., 6
- \uparrow #lattice points: 4, ..., 10
- 4 self-dual
- 5 smooth $X(\Delta_2) = \text{toric}$

del Pezzo surfaces:

 $dP_{0,1,2,3}$, $\mathbb{P}^1 imes \mathbb{P}^1$ (smooth

toric Fano surfaces)

< □ > < 同 > < 回 > < Ξ > < Ξ

Known Classification Results

- $GL(n;\mathbb{Z})$ -equivalence classes of reflexive Δ_n finite for each n
- Kreuzer[†]-Skarke (Using PALP) [1990s]: a fascinating sequence

dimension	1	2	3	4	
# Reflexive Polytopes	1	16	4319	473,800,776	
# Regular	1	5	18	124	

- $\bullet \ n \geq 5$ still not classified; generating function also not known
- Smooth ones known for a few more dimensions (Kreuzer-Nill, Øbro, Paffenholz): {1, 5, 18, 124, 866, 7622, 72256, 749892, 8229721...}
- n = 2, 3 built into SAGE

- Kreuzer[†]-Skarke 1997-2002: 473,800,776 Δ_4
 - AT LEAST this many CY3 hypersurfaces in A(Δ₄): CY3 depends on triangulation (resolution) of Δ, but Hodge numbers only depend on Δ₄ (Batyrev-Borisov):

$$\begin{split} h^{1,1}(X) &= \ell(\Delta^{\circ}) - \sum_{\operatorname{codim}\theta^{\circ}=1} \ell^{\circ}(\theta^{\circ}) + \sum_{\operatorname{codim}\theta^{\circ}=2} \ell^{\circ}(\theta^{\circ})\ell^{\circ}(\theta) - 5; \\ h^{1,2}(X) &= \ell(\Delta) - \sum_{\operatorname{codim}\theta=1} \ell^{\circ}(\theta) + \sum_{\operatorname{codim}\theta=2} \ell^{\circ}(\theta)\ell^{\circ}(\theta^{\circ}) - 5 \; . \end{split}$$

- Dual polytope $\Delta \leftrightarrow \Delta^{\circ} = \text{mirror symmetry}$
- Vienna group (KS, Knapp,...), Oxford group (Candelas, Lukas, YHH, ...), MIT group (Taylor, Johnson, Wang, ...), Northeastern/Wits Collab (Nelson, Jejjala, YHH), Virginia Tech (Anderson, Gray, Lee, ...) Tsinghua/London/Oxford Collab (Yau, Seong, YHH)

Georgia O'Keefe

30,108 distinct Hodge pairs, $\chi \in [-496, 496]$;

 $(h^{1,1}, h^{2,1}) = (27, 27)$ dominates: 910113 instances

YHH (1308.0186)

In Philip's Office

イロト イヨト イヨト イ

• DATABASES:

http://hep.itp.tuwien.ac.at/~kreuzer/CY/
http://www.rossealtman.com/

- Altman-Gray-YHH-Jejjala-Nelson 2014-17 triangulate Δ_4 (orders more than 1/2-billion): up to $h^{1,1} = 7$
- Candelas-Constantin-Davies-Mishra 2011-17 special small Hodge numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Taylor, Johnson, Wang et al. 2012-17 elliptic fibrations
- YHH-Jejjala-Pontiggia 2016 distribution of Hodge, χ , Pseudo-Voigt

KS stats

The Compact CY3 Landscape

- 20 years of research by mathematicians and physicists
- 10^{10} million data-points (and growing)

CY3 Compactification: Recent Development

- E_6 GUTs less favourable, SU(5) and SO(10) GUTs: general embedding
 - Instead of TX, use (poly-)stable holomorphic vector bundle V
 - LE particles \sim massless modes of V-twisted Dirac Operator: $abla_{X,V}\Psi = 0$
 - massless modes of $\nabla_{X,V} \xleftarrow{1:1} V$ -valued cohomology groups

• Gauge group(V) = G = SU(n), n = 3, 4, 5, gives $H = \text{Commutant}(G, E_8)$:

$E_8 \rightarrow G \times H$			Breaking Pattern
$SU(3) \times E_6$	248	\rightarrow	$(1,78) \oplus (3,27) \oplus (\overline{3},\overline{27}) \oplus (8,1)$
$SU(4) \times SO(10)$	248	\rightarrow	$(1,45) \oplus (4,16) \oplus (\overline{4},\overline{16}) \oplus (6,10) \oplus (15,1)$
$SU(5) \times SU(5)$	248	\rightarrow	$(1,24) \oplus (\overline{5},\overline{10}) \oplus (\overline{5},10) \oplus (\overline{10},5) \oplus (\overline{10},\overline{5}) \oplus (24,1)$

Particle content

Decomposition	Cohomologies
$SU(3) \times E_6$	$n_{27} = h^1(V), n_{\overline{27}} = h^1(V^*) = h^2(V), n_1 = h^1(V \otimes V^*)$
$SU(4) \times SO(10)$	$n_{16} = h^1(V), n_{\overline{16}} = h^2(V), n_{10} = h^1(\wedge^2 V), n_1 = h^1(V \otimes V^*)$
$SU(5) \times SU(5)$	$n_{10} = h^1(V^*), n_{\overline{10}} = h^1(V), n_5 = h^1(\wedge^2 V), n_{\overline{5}} = h^1(\wedge^2 V^*), n_1 = h^1(V \otimes V^*)$

• Further to SM: $H \xrightarrow{\text{Wilson Line}} SU(3) \times SU(2) \times U(1)$

Ubi Materia, Ibi Geometria

- \bullet Issues in low-energy physics \sim Precise questions in Alg Geo of (X,V)
 - Particle Content \sim (tensor powers) V Equivariant Bundle Cohomology on X
 - LE SUSY \sim Hermitian Yang-Mills connection \sim Bundle Stability
 - Yukawa \sim Trilinear (Yoneda) composition
 - Doublet-Triplet splitting \sim representation of fundamental group of X

۲	e.g.,	for	π_1	(X)	=	\mathbb{Z}_3	×	\mathbb{Z}_3	WL:
---	-------	-----	---------	-----	---	----------------	---	----------------	-----

Cohomology	Representation	Multiplicity	Name
$\left[\alpha_1^2\alpha_2\otimes H^1(X,V)\right]^{inv}$	$({f 3},{f 2})_{1,1}$	3	left-handed quark
$\left[\alpha_1^2 \otimes H^1(X,V)\right]^{inv}$	$({f 1},{f 1})_{6,3}$	3	left-handed anti-lepton
$\left[\alpha_1^2 \alpha_2^2 \otimes H^1(X, V)\right]^{inv}$	$(\overline{3},1)_{-4,-1}$	3	left-handed anti-up
$\left[\alpha_2^2 \otimes H^1(X,V)\right]^{inv}$	$(\overline{3},1)_{2,-1}$	3	left-handed an ti-down
$[H^1(X,V)]^{inv}$	$(1, 2)_{-3, -3}$	3	left-handed lepton
$\left[\alpha_1 \otimes H^1(X,V)\right]^{inv}$	$({f 1},{f 1})_{0,3}$	3	left-handed anti-neutrino
$\left[\alpha_1 \otimes H^1(X, \wedge^2 V)\right]^{inv}$	$(1, 2)_{3,0}$	1	up Higgs
$\left[\alpha_1^2 \otimes H^1(X, \wedge^2 V)\right]^{inv}$	$(1, 2)_{-3,0}$	1	down Higgs

YANG-HUI HE (London/Oxford/Tianjin)

Institut Confucius 33 / 98
A Heterotic Standard Model

• [Braun-YHH-Ovrut-Pantev] (hep-th/0512177, 0601204)

- $X_0^{19,19}$ double-fibration over $dP_9 \quad \pi_1(X) = \mathbb{Z}_3 \times \mathbb{Z}_3$
- V stable SU(4) bundle: Generalised Serre Constrct
- Couple to $\mathbb{Z}_3 imes \mathbb{Z}_3$ Wilson Line

Matter
$$= \mathbb{Z}_3 imes \mathbb{Z}_3$$
-Equivariant cohomology on $X_0^{3,3}$

• Exact $SU(3) \times SU(2) \times U(1) \times U(1)_{B-L}$ spectrum:

No exotics; no anti-generation; 1 pair of Higgs; RH Neutrino

• $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$ version [Bouchard-Cvetic-Donagi] same manifold

•
$$X_0^{19,19}$$
 is a CICY! Obvervatio Curiosa

Algorithmic Compactification

- Searching the MSSM, Sui Generis?
 - $\sim 10^7$ Spectral Cover bundles [Donagi, Friedman-Morgan-Witten, 1996-8] over elliptically fibered CY3 (2005-9), [Donagi-YHH-Ovrut-Pantev-Reinbacher, Gabella-YHH-Lukas,...]
 - $\sim 10^5$ (Monad) Bundles over all CICYs [Anderson-Gray-YHH-Lukas, 2007-9]
 - Monad Bundles over KS YHH-Kreuzer-Lee-Lukas 2010-11: ~ 200 in 10^5 3-gens
 - culminating in .. Stable Sum of Line Bundles over CICYs (Oxford-Penn-Virginia 2012-) Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10^{10} MSSM
- meanwhile ... LANDSCAPE grew with D-branes Polchinski 1995, M-Theory/G₂
 Witten, 1995, F-Theory/4-folds Katz-Morrison-Vafa, 1996, AdS/CFT Maldacena 1998,
 Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, ...

Branes and the Non-Compact Calabi-Yau Landscape

()

- D-branes Dirichlet Boundary conditions for open strings;
- D-brane world-volumes: Dp has p + 1-D w.v.

 $D1, D3, \dots, D9$ of dimensions $1 + 1, \dots, 9 + 1;$ DYNAMICAL: Carry charges $(2, 4, \dots, 10 \text{ forms}) \int_{Dp} Q^{(p+1)}$

Image: A math a math

i.e., Open strings carry charges (Chan-Paton factors) ⇒
 D-branes = Supports of Sheafs (strictly: D-brane = object in D^b(Coh))

Another 10 = 4 + 6

- important property: GAUGE ENHANCEMENT
 - i.e., world-volume sees a U(1)-bundle
 - Bringing together (stack) n parallel D-branes $U(1)^n \to U(n)$
- SUMMARY Type IIB: 10D, Closed Strings, Open Strings/Dp-Branes, p odd
- $\mathbb{R}^{1,9} \simeq \mathbb{R}^{1,3}$ (world-volume of D3) $\times X^6$ (transverse non-compact CY3)
- SIMPLEST CASE: transverse CY3 = \mathbb{C}^3
 - Original Maldacena's AdS/CFT (1997): $\mathcal{N} = 4$ U(n) SYM on 4D probe w.v.
 - Gauge Fields A^{μ} : Hom $(\mathbb{C}^n, \mathbb{C}^n)$
 - Matter Fields $\mathcal{R} = 4, 6$: Adjoint (Weyl) fermions Ψ_{IJ}^4 : $4 \otimes \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^n)$ Bosons Φ_{IJ}^6 : $6 \otimes \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^n)$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

A Geometer's AdS/CFT

• Rep. Variety(Quiver) \sim VMS(SUSY QFT) \sim affine/singular variety

e.g $\mathcal{N} = 1$ Quiver variety = vacuum of F- & D-flatness = non-compact CY3

- $\mathcal{N} = 4 \ U(N)$ Yang-Mills
 - 3 adjoint fields X, Y, Z with superpotential W = Tr(XYZ XZY)

• N D3-branes (w.v. is $\mathcal{N}=4$ in $\mathbb{R}^{3,1}$) $\perp \mathbb{R}^6$

 $\simeq \mathbb{C}^3 = \mathsf{Vacuum} \ \mathsf{Moduli} \ \mathsf{Space}$

 $\bullet~\text{VMS}\simeq$ affine non-compact CY3 by construction

Image: A match the second s

- QUIVER = Finite graph (label = rk(gauge factor)) + relations from W
 - Matter Content: Nodes + arrows
 - Relations (F-Terms): $D_iW = 0 \rightsquigarrow [X,Y] = [Y,Z] = [X,Z] = 0$

• Here \mathbb{C}^3 is real cone over S^5 (simplest Sasaki-Einstein 5-manifold), others?

Orbifolds (V-manifolds)

- Orbifolds: next best thing to \mathbb{C}^3 (Satake 60's);
- Transverse CY3 ≃ C³/{Γ ⊂ SU(k)} that admit crepant resolution, i.e., resolve to Calabi-Yau; Γ discrete finite subgroup of holonomy SU(k); k = 2,3
- Γ -Projection: $\gamma A^{\mu}\gamma^{-1} = A^{\mu}$ and $\Psi_{IJ} = R(\gamma)\gamma \Psi_{IJ}\gamma^{-1}$; i.e.,
 - Gauge Group $U(n) \Rightarrow \prod_i U(N_i)$
 - Matter fields decompose as

$$\begin{aligned} \left(\mathcal{R} \otimes \hom \left(\mathbb{C}^n, \mathbb{C}^n \right) \right)^{\Gamma} &= \bigoplus_{i,j} \mathcal{R} \otimes \left(\mathbb{C}^{N_i} \otimes \mathbb{C}^{N_j *} \otimes \mathbf{r_i} \otimes \mathbf{r_j^*} \right)^{\Gamma} \\ &= \bigoplus_{i,j} a_{ij}^{\mathcal{R}} \left(\mathbb{C}^{N_i} \otimes \mathbb{C}^{N_j *} \right), \end{aligned}$$

where $\mathcal{R}\otimes \mathbf{r}_i = \bigoplus_j a_{ij}^{\mathcal{R}}\mathbf{r}_j$

- a_{ij}^4 bi-fundamental fermions: (N_i, \bar{N}_j) of $SU(N_i) \times SU(N_j)$
- $a_{ij}^{\mathbf{6}}$ bi-fundamental bosons: (N_i, \bar{N}_j) of $SU(N_i) \times SU(N_j)$

Quivers

۰

	Parent	$\stackrel{\Gamma}{\longrightarrow}$	Orbifold Theory	
	$\mathcal{N} = 2, \text{ for } \Gamma \subset SU($		$\mathcal{N} = 2, \text{ for } \Gamma \subset SU(2)$	
SUSY	$\mathcal{N}=4$	\sim	$\mathcal{N} = 1, \text{ for } \Gamma \subset SU(3)$	
			$\mathcal{N} = 0, \text{ for } \Gamma \subset \{SU(4) \simeq SO(6)\}$	
Gauge	U(n)		$\prod U(N_{r}) \qquad \sum N_{r} \dim \mathbf{r}_{r} = n$	
Group		07	$\prod_{i} O(N_i), \qquad \sum_{i} N_i \operatorname{dim} I_i = N$	
Fermion	Ψ_{IJ}^{4}	\sim	$\Psi^{ij}_{f_{ij}}$	
Boson	Φ^{6}_{IJ}	\sim	$egin{array}{lll} \Phi^{ij}_{f_{ij}} & \mathcal{R}\otimes \mathbf{r}_i = igoplus_j a^{\mathcal{R}}_{ij} \mathbf{r}_j \end{array}$	

 $I, J = 1, ..., n; f_{ij} = 1, ..., a_{ij}^{\mathcal{R}=4,6}$

• In physics: Douglas & Moore (9603167), $\mathbb{C}^2/\mathbb{Z}_n$; Johnson & Meyers

(9610140) Formalised in Lawrence, Nekrasov & Vafa, (9803015);

Quivers: Finite Graphs with Representation

• A Graphical way to represent this data

- Node $i \sim$ gauge factor $U(N_i)$
- Arrow $i \rightarrow j \sim$ bi-fundamental (N_i, \bar{N}_j)

• Gabriel: 1970s: $x_1 \in \operatorname{Hom}(\mathbb{C}^{n_1}, \mathbb{C}^{n_2})$, etc.

Image: A math a math

McKay Correspondence

- Take the $\mathbb{C}^2/(\Gamma \subset SU(2)) \times \mathbb{C}$ case: Discrete Finite Subgroups of SU(2)
- F. Klein (1884) (double covers of those of SO(3), i.e., symmetry groups of

					<u>۱</u>	
tho	\mathbf{P}	latonic	CO	10	C I	
une		acome	30	nu	5 j	

Group	Name	Order
$A_n \simeq \mathbb{Z}_{n+1}$	Cyclic	n+1
D_n	Binary Dihedral	2n
E_6	Binary Tetrahedral	24
E_7	Binary Octahedral (Cube)	48
E_8	Binary Icosahedral (Dodecadedron)	120

McKay (1980) Take the Clebsch-Gordan decomposition for R = fundamental
 2 representation of SU(2)

ADE-ology

- $\mathbf{2}\otimes\mathbf{r}_i= igoplus_j a_{ij}^{\mathbf{2}}\mathbf{r}_j$ and treat $a_{ij}^{\mathbf{2}}$ as adjacency matrix
- McKay Quivers (rmk: Cartan matrix symmetric ~> graph unoriented)
- QUIVERS = DYNKIN DIAG. OF CORRESPONDING AFFINE LIE ALGEBRA!!

Geometrical McKay

• Geometrically: González-Springberg & Verdier (1981) Crepant Resolution $K3 \rightarrow \mathbb{C}^2/\Gamma$

$$A_n: \quad xy + z^n = 0$$
$$D_n: \quad x^2 + y^2 z + z^{n-1} = 0$$
$$E_6: \quad x^2 + y^3 + z^4 = 0$$
$$E_7: \quad x^2 + y^3 + yz^3 = 0$$
$$E_8: \quad x^2 + y^3 + z^5 = 0$$

- Intersection matrix of -2 exceptional curves in the blowup \rightsquigarrow Quiver
- Bridgeland-King-Reid (1999) Use Fourier-Mukai: McKay as an auto-equivalence in $\widetilde{\mathcal{D}^b}(\operatorname{coh}(\widetilde{X/G})) = \mathcal{D}^b(\operatorname{coh}^G(X))$

・ロト ・回ト ・ヨト ・

CY3 case: $\mathbb{C}^3/(\Gamma \subset SU(3))$

- McKay Quiver $\Rightarrow \mathcal{N} = 2$ SUSY gauge theory on 4D world-volume
- $\mathcal{N} = 1$ SUSY: Need discrete finite groups $\Gamma \subset SU(3)$
- Classification: Blichfeldt (1917)

Infinite Series	$\Delta(3n^2), \Delta(6n^2)$
Exceptionals	$\Sigma_{36\times3}, \Sigma_{60\times3}, \Sigma_{168\times3}, \Sigma_{216\times3}, \Sigma_{360\times3}$

- Gives chiral $\mathcal{N} = 1$ gauge theories in 4D wv of D3-probe
- most phenomenologically interesting
- Hanany & YHH hep-th/9811183
- Rmk: Crepant Resolutions to CY3 and Generalised McKay (Reid, Ito et al.) not as well established

SU(3) quivers and $\mathcal{N} = 1$ gauge theories

(
$\Gamma \subset SU(3)$	Gauge Group
$\widehat{A_n} \cong \mathbb{Z}_{n+1}$	(1^{n+1})
$\mathbb{Z}_k \times \mathbb{Z}_{k'}$	$(1^{kk'})*$
$\widehat{D_n}$	$(1^4, 2^{n-3})$
$\widehat{E_6} \cong \mathcal{T}$	$(1^3, 2^3, 3)$
$\widehat{E_7} \cong \mathcal{O}$	$(1^2, 2^2, 3^2, 4)$
$\widehat{E_8} \cong I$	$(1, 2^2, 3^2, 4^2, 5, 6)$
$E_6 \cong T$	$(1^3, 3)$
$E_7 \cong O$	$(1^2, 2, 3^2)$
$E_8 \cong I$	$(1, 3^2, 4, 5)$
$\Delta_{3n^2}(n=0 \bmod 3)$	$(1^9, 3^{\frac{n^2}{3}-1})*$
$\Delta_{3n^2} (n \neq 0 \bmod 3)$	$(1^3, 3^{\frac{n^2-1}{3}})*$
$\Delta_{6n^2} (n \neq 0 \bmod 3)$	$(1^2, 2, 3^{2(n-1)}, 6^{\frac{n^2-3n+2}{6}})*$
Σ_{168}	$(1, 3^2, 6, 7, 8)*$
Σ_{216}	$(1^3, 2^3, 3, 8^3)$
$\Sigma_{36 \times 3}$	$(1^4, 3^8, 4^2)*$
$\Sigma_{216 \times 3}$	$(1^3, 2^3, 3^7, 6^6, 8^3, 9^2) \ast$
$\Sigma_{360 \times 3}$	$(1, 3^4, 5^2, 6^2, 8^2, 9^3, 10, 15^2) *$

・ロト ・日子・ ・ ヨト

DICTIONARY: Quivers & Gauge Theory

$$S = \int d^4x \left[\int d^2\theta d^2\bar{\theta} \ \Phi_i^{\dagger} e^V \Phi_i + \left(\frac{1}{4g^2} \int d^2\theta \ \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha} + \int d^2\theta \ \mathcal{W}(\Phi) + \text{c.c.} \right) \right]$$
$$W = \text{superpotential} \qquad V(\phi_i, \bar{\phi_i}) = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{g^2}{4} (\sum_i q_i |\phi_i|^2)^2$$

• Encode into **QUIVER** (rep of finite labelled graph with relations):

 $\prod_{i=1}^{k} U(N_j)$ gauge group k nodes, dim vec (N_1, \ldots, N_k) bi-fund X_{ij} field $(\Box, \overline{\Box})$ of $U(N_i) \times U(N_j)$ Arrow $i \rightarrow j$ Loop $i \rightarrow i$ adjoint ϕ_i field of $U(N_i)$ Cycles Gauge Invariant Operator 2-cycles Mass-terms $W = \sum c_i \operatorname{cycles}_i$ Superpotenital Relations Jacobian of $W(\phi_i, X_{ij})$ • VACUUM ~ $V(\phi_i, \bar{\phi_i}) = 0 \Rightarrow$ $\frac{\partial W}{\partial \phi_i, X_i} = 0$ **F-TERMS**

$$\sum q_i |\phi_i|^2 + q_k |X_k| = 0 \quad \text{D-TERMS}$$

(a)

Another Famous Example: Conifold

• $SU(N) \times SU(N)$ gauge theory with 4 bi-fundamental fields

- D3-branes transverse to the conifold singularity = $(\{uv = wz\} \subset \mathbb{C}^4)$ = VMS (Klebanov-Witten 1999] $\mathcal{N} = 1$ "conifold" Theory)
- # gauge factors = $N_g = 2$; # fields = $N_f = 4$; # terms in $W = N_w = 2$
- Observatio Curiosa: $N_g N_f + N_w = 0$, as with \mathbb{C}^3 , true for almost all known cases in AdS_5/CFT_4

The Landscape of Affine (Singular) CY3

• 2 decade programme of the School of A. Hanany:

 Orbifolds: C³/(Γ ⊂ SU(3)) Generalized McKay Correspondence (Hanany-YHH, 98); Fano (del Pezzo): dP_{0,...,8} (w/ Hanany,Feng, Franco, et al. 98 - 00); LARGEST FAMILY by far Toric: e.g., conifold, Y^{p,q}, L^{p,q}...

Computational Algebraic Geometry

・ロト ・回ト ・ヨト ・ヨト

$\mathcal M$ Toric CY3 \longleftrightarrow Bipartite Graph on T^2

Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni ...

• $N_g - N_f + N_w = 0$ is Euler relation for a tiling of torus

Image: A math a math

Toric CY3, Mirror Symmetry & Bipartite Tilings

- Mirror Symmetry [Strominger-Yau-Zaslow; Hori-Vafa]
 D3-brane on CY3 → D6-branes wrapping 3-cycles in mirror CY3
- [Feng-Kennaway-YHH-Vafa] torus T^2 lives in T^3 of mirror symmetry; Tropical Geometry
- THEOREM: [R. Böckland, N. Broomhead, A. Craw, A. King, K. Ueda ...] The (coherent component of) VMS as representation variety of a quiver is an affine (non-compact, possibly singular) toric Calabi-Yau variety of complex dimension 3 ⇔ the quiver + superpotential is graph dual to a bipartite graph drawn on T²
- Rmk: Each \Rightarrow SCFT in 3+1-d

Image: A math a math

SUMMARY: \mathbb{C}^3 , Hexagonal Tilings, SYM

 $\mathcal{N}=1$ SYM = D3-branes transverse to $\mathbb{C}^3=\mathcal{C}(S^5)=$ hexagonal bipartite tiling

YANG-HUI HE (London/Oxford/Tianjin)

SUMMARY: Conifold and Square Tilings

A QFT Duality & a Quiver Transformation

• Seiberg (1994): dual quantum field theories, in particular same VMS 2 theories: Direct Electric theory: N_c with N_f flavours; Dual Magnetic theory: $N_f - N_c$ (take $\frac{3}{2}N_c \le N_f \le 3N_c$) with N_f flavours

• Feng-Hanany-YHH (2000) using Hanany-Witten (1996)

[cf. Cachazo-Intriligator-Katz-Vafa, 2001];

A Quiver Duality from Seiberg Duality

We have quiver labeled by $(N_c)_i$ and arrows a_{ij} :

9 Pick dualisation node i_0 with N_c , an define:

 $I_{in} :=$ nodes having arrows going into i_0

 I_{out} := nodes having arrow coming from i_0

 I_{no} := nodes unconnected with i_0

Solution Reverse arrows going in or out of i_0 , leave I_{no} , and change affected nodes:

$$a_{ij}^{dual} = \begin{cases} a_{ji} & \text{if either} \quad i, j = i_0 \\ a_{ij} - a_{i_0i}a_{ji_0} & \text{if both} \quad A \in I_{out}, B \in I_{ir} \end{cases}$$

If negative, take it to mean $-a^{dual}$ arrows from j to i.

Generate W term

Toric Seiberg Duality

Image: A match the second s

- Belyĭ Map: Σ smooth compact Riemann surface, rational map $\beta: \Sigma \longrightarrow \mathbb{P}^1$ ramified only at $(0, 1, \infty)$
- Theorem [Belyĭ]: β exists $\Leftrightarrow \Sigma$ can be defined over $\overline{\mathbb{Q}}$; (β, Σ) Belyĭ Pair
- A Bipartite graph on Σ
 - label each $\beta^{-1}(0)$ black with valency = ramification index;
 - likewise $\beta^{-1}(1)$ white;
 - then $\beta^{-1}(\infty)$ fixed to live one per face
- Dessin d'Enfant = $\beta^{-1}([0,1] \in \mathbb{P}^1)$
- Ramification data / Passport: $\begin{cases} r_0(1), r_0(2), \dots, r_0(B) \\ r_1(1), r_1(2), \dots, r_1(W) \\ r_\infty(1), r_\infty(2), \dots, r_\infty(I) \end{cases}$

イロト イヨト イヨト イヨト

• equivalent description Permutation Triple: Let there be d edges in the bipartite graph and consider symmetric group S_d , define in cycle-notation

$$\sigma_B = (\dots)_{r_0(1)} (\dots)_{r_0(2)} \dots (\dots)_{r_0(B)}$$

$$\sigma_W = (\dots)_{r_1(1)} (\dots)_{r_1(2)} \dots (\dots)_{r_1(W)}$$

$$\sigma_B \sigma_W \sigma_\infty = \mathbb{I}$$

encodes how the sheets are permuted at the ramification points;

• Example: $\sigma_B = \sigma_W = \sigma_\infty = (123)$

$\mathbb{T}^2: y^2 = x^3 + 1$	$ \stackrel{\beta = \frac{1}{2}(1+y)}{\longrightarrow} $	\mathbb{P}^1	Local Coordinates on \mathbb{T}^2	Ramification Index of β
(0, -1)	$\stackrel{\beta}{\mapsto}$	0	$(x,y) \sim (\epsilon, -1 - \frac{1}{2}\epsilon^3)$	3
(0, 1)	$\stackrel{\beta}{\mapsto}$	1	$(x,y) \sim (\epsilon, 1 + \frac{1}{2}\epsilon^3)$	3
(∞,∞)	$\stackrel{\beta}{\mapsto}$	∞	$(x,y) \sim (\epsilon^{-2},\epsilon^{-3})$	3

Image: A math a math

• Toric CY3 Quiver \rightsquigarrow bipartite tiling of $T^2 \rightsquigarrow$ Belyĭ pair

(Elliptic Curve $E, \qquad \beta: E \longrightarrow \mathbb{P}^1$)

• Our most familiar example of $\mathcal{N} = 4$ super-Yang-Mills:

ADEA

• Klebanov-Witten's Conifold Theory

・ロン ・回 と ・ ヨン・

e.g., Cone over $F_0 \simeq \mathbb{P}^1 \times \mathbb{P}^1$ (zeroth Hirzebruch surface);

Rigidity & Transcendence Degree

- \bullet Dessins are rigid: in particular elliptic curve has fixed τ
- In gauge theory:
 - R-charge ~ length(edges), choose isoradial embedding (all nodes are on circles of equal radius); then fix by *a*-max = volume Z-min of Sasaki-Einstein (Intriligator-Wecht, Martelli-Sparks-Yau); Futaki-Donaldson Inv.
 - R-charges and normalized volume of dual geometry are algebraic numbers
- Seiberg Duality/Cluster Mutation = so-called "Urban Renewal"

- $j(\tau)$ of isoradial dimer invariant:
- \bullet transcendence degree $/\mathbb{Q}$

of R-charges invariant

Image: A math a math

SUMMARY

・ロト ・回ト ・ヨト

• relation amongst the 3 complex structures?

Physics	Geometry	Number Theory
au(a-max/Vol-min)	au(mirror)	au(dessin)

• Define $\mathcal{D}_{>3}^g := \{ \text{dessins of valency} \ge 3 \text{ on } \Sigma_g \}$ then Observation:

$$\Psi: \mathcal{D}^{g}_{\geq 3} \twoheadrightarrow \left\{ \text{affine toric } CY^{2g+1} \right\}$$

 Ψ surjection (by having CY^{2g+1} as representation variety of dual quiver)

- \bullet Conjecture: $\Psi^{-1}(\mathcal{M})$ in orbits of cluster mutation/Seiberg/urbal renewal
- Question: Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) acts on $\mathcal{D}_{\geq 3}^g$ (faithful for g = 0,1), what is action on {affine toric CY^{2g+1} } and on quiver gauge theory?

WWJD: What Would JPython/AI Do?

YHH, 1706.02714, PLB 774, 2017

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

SUMMARY: Algorithms and Datasets in String Theory

- Growing databases and computational algorithms motivated by string theory
- Archetypical Problems
 - Classify configurations (typically integer matrices: polyotope, adjacency, ...)
 - Compute geometrical quantity algorithmically
 - toric \rightsquigarrow combinatorics;
 - quotient singularities \rightsquigarrow rep. finite groups;
 - generically \rightsquigarrow ideals in polynomial rings;
 - Numerical geometry (homotopy continuation);
 - Cohomolgy (spectral sequences, Adjunction, Euler sequences)
- Typical Problem in String Theory/Algebraic Geometry:

Image: A math a math

- The Good Last 10-15 years: several international groups have bitten the bullet Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, ... computed many geometrical/physical quantities and compiled them into various databases Landscape Data (10^{9~10} entries typically)
 - The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential) \dots e.g., how to construct stable bundles over the $\gg 473$ million KS CY3? Sifting through for MSSM not possible \dots

The ??? Borrow new techniques from "Big Data" revolution

A D > A P > A B > A

A Prototypical Question

- Hand-writing Recognition, e.g., my 0 to 9 is different from yours: 1234567890
- How to set up a bijection that takes these to {1, 2, ..., 9, 0}? Find a clever Morse function? Compute persistent homology? Find topological invariants?
 <u>ALL are inefficient and too sensitive to variation.</u>
- What does your iPhone/tablet do? What does Google do?

Take large sample, take a few hundred thousand (e.g. NIST database)
 6 → 6, 8 → 8, 2 → 2, 4 → 4, 8 → 8, 7 → 7, 8 → 8,
 ○ → 0, 4 → 4, 2 → 2, 5 → 5, 6 → 6, 3 → 3, 2 → 2,
 9 → 9, 6 → 0, 3 → 3, 8 → 8, 8 → 8, (→ 1, 6 → 0, ...

• Machine-Learn: (1) Data Acquisition; (2) Setup Neural Network (NN); (3)

Train NN. generically, if the NN is sufficiently complex, called Deep Learning

イロト イヨト イヨト イヨ

A Single Neuron: The Perceptron

- began in 1957 (!!) in early AI experiments (using CdS photo-cells)
- DEF: Imitates a neuron: activates upon certain inputs, so define
 - Activation Function $f(z_i)$ for input tensor z_i for some multi-index i;
 - consider: $f(w_i z_i + b)$ with w_i weights and b bias/off-set;
 - typically, f(z) is sigmoid, Tanh, etc.
- Given training data: $D = \{(x_i^{(j)}, d^{(j)}\}$ with input x_i and known output $d^{(j)}$, minimize

$$SD = \sum_{j} \left(f(\sum_{i} w_{i} x_{i}^{(j)} + b) - d^{(j)} \right)^{2}$$

to find optimal w_i and $b \rightsquigarrow$ "learning"

• Essentially (non-linear) regression

・ロト ・回ト ・ヨト
The Neural Network: network of neurons \rightsquigarrow the "brain"

- DEF: a connected graph, each node is a perceptron (Beta-version implemented on Mathematica 11.1 +)
 - adjustable weights/bias;
 - Ø distinguished nodes: 1 set for input and 1 for output;
 - iterated training rounds.

Simple case: forward directed only, called multilayer perceptron

- $\bullet\,$ use the simple MLP: e.g., Sigmoid $\rightarrow\,$ Linear $\rightarrow\,$ Tanh $\rightarrow\,$ Summation
- Essentially how brain learns complex tasks; apply to our Landscape Data

Hypersurfaces in $W\mathbb{P}^4$: Warmup I

Oftentimes, questions in pheno are qualitative, e.g.,

- large # complex structure how many have, say, $h^{2,1} > 50$?
 - [Candelas-Lynker-Schimmrigk] Landau-Ginzburg methods: many hours; using Euler sequence/Adjunction: many more hours

(a) Mirror plot of $(\chi, h^{1,1} + h^{2,1})$ (b) Distribution of $h^{2,1}$

- With the MLP NN, 500 training rounds, under 1 min, learns h^{2,1} > 50 to 97%
 Cosine distance D_C = 0.998, Matthews φ = 0.84.
- consistency check (testing full set): cool and re-assuring but not useful

・ロト ・回ト ・ヨト

Hypersurfaces in $W\mathbb{P}^4$: Warmup II

- What if the data is not complete? Very often the case when computation powers are not yet capable (e.g., all triang for KS dataset: don't even know how many CY3 hypersurfaces in the 473 million toric varieties)
- Standard method: take partial training and validation data, s.t., $D = T \sqcup V$
 - train NN with random 2000/7555 inputs ($\sim 1/4$ only)
 - use the trained NN to predict value for the remaining UNSEEN 7555 2000
 - Get $\sim 91.8\%$ precision, $d_C=0.91,\,\phi=0.84~$ in less than 20 sec on regular laptop! Learning Curves
- Another Question: How many have χ divisible by 3? (useful for # generations after Wilson line) 2000 samples ~ 1 min: 80% precision, $d_C = 0.91$ when predicting 7555-2000
- Endless possibilities of mathematical/physical queries...

CICYs: a Colourful Example

- An image = a matrix (pixels) with entries denoting shade/colour; NN really good at images (e.g. hand-writing) [RMK: not using a convolutional NN here]
- $\bullet\,$ CICY is a (padded) 12×15 matrix with 6 colours $\sim \rightarrow\,$ CICY is an image

- (a) typical CICY;
- (b) average CICY
- Input more sophisticated, so greater accuracy expected: e.g. in learning large number of Kahler parametres h^{1,1} > 5:

learns 4000 samples (< 50%) in ~ 5 min; validate against 7890-4000: 97% accuracy, $d_C=0.98,~\phi=0.87.$

Learning Curves

Kieran Bull [Oxford] [Bull-YHH-Jejjala-Mishra: arXiv:1806.03121]

- TensorFlow Python's implementation of NNs and DL
- Compare NNs with Decision Trees, Support Vector Machines, etc

Can one learn the FULL information on Hodge numbers? $h^{1,1} \in [0,19]$ so can set up 20-channel NN classifer, regressor, as well as SVM

CICYs: Comparative Studies

 $h^{1,1}$ for NN, Regressor, SVM at 20 and 80% training $\mbox{ Sky's the Limit }$

YANG-HUI HE (London/Oxford/Tianjin)

Hodge number h 11

Institut Confucius 75 / 98

Remarks and Sanity Checks

• Why does it work?

- Short answer in the data-science community: nobody knows!!
- Theorems still need to be proven about convergence, measure, etc., esp. for a large number of neurons; even a few neurons has many parametres
- At the most basic level: problems in algebraic geometry boil down to finding kernels of integer matrices
- NOT over-fitting training data \cap validation data = {}
- A Reprobate: Try to predict the next prime; has to fail, otherwise crazy
 - Train our NN: gets a miserable 0.1% accuracy even on learning, forget about predicting, great! Better off just fitting $n \log(n)$ using PNT
 - $\bullet\,$ expect other things like digits of π to utterly fail

A D > A P > A B > A

Summary and Outlook

PHYSICS • The string landscape now solidly resides in the age of Big Data

- Use Neural Networks as
 - 1. Classifier deep-learn and categorize landscape data
 - 2. Predictor estimate results beyond computational power
- MATHS somehow bypassing the expensive steps of long sequence-chasing, Gröbner bases, dual cones/combinatorics and getting the right answer. how is AI doing maths more efficiently without knowing any maths?
 - problems in geometry, combinatorics, etc, good; number theory, not so good.

- many species of animals are capable of extremely sophisticated tasks (e.g., chimps with herbal medicine); we are such a species when confronted with the landscape; we can (deep-)learn by trial-error before we tackle the fundamental question of why in the future ...
- Try your favourite problem and see
- Boris Zilber [Merton Professor of Logic, Oxford]: "you've managed syntax without semantics..."

Sophia (Hanson Robotics, HK)

First non-human citizen (2017, Saudi Arabia)

First non-human with UN title (2017)

. . .

大哉大哉,宇宙之謎。美哉美哉,真理之源。 時空量化,智者無何。管測大塊,學也洋洋。

丘成桐先生: 時空頌

Infinite, infinite the secrets of the universe.

Inexhaustible, lovely in every detail.

Measure time, measure space no one can do it.

Watched through a straw what's to be learned has no end.

Prof. Shing-Tung Yau, 2002

A sequence of specializations:

- M Riemannian: positive-definite symmetric metric
- *M* Complex Riemannian: have (p, q)-forms with *p*-holomorphic and *q*-antiholomorphic indices: $d = \partial + \overline{\partial}$ (with $\partial^2 = \overline{\partial}^2 = \{\partial, \overline{\partial}\} = 0$)
- M Hermitian: complex Riemannian and can tranform $g_{mn} = g_{\bar{m}\bar{n}} = 0$
- M Kähler: Hermitian with Kähler form $\omega := ig_{m\bar{n}}dz^m \wedge dz^{\bar{n}}$ such that $d\omega = 0 \ (\Rightarrow \partial_m g_{n\bar{p}} = \partial_n g_{m\bar{p}}; g_{m\bar{n}} = \partial \bar{\partial} K(z, \bar{z})$ for some scalar K)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Cohomology:

• On Riemannian M: can define Laplacian on p-forms (Hodge star

$$\star (dx^{\mu_1} \wedge \ldots \wedge dx^{\mu_p}) := \frac{\epsilon^{\mu_1 \ldots \mu_n}}{(n-p)! \sqrt{|g|}} g_{\mu_{p+1}\nu_{p+1}} \ldots g_{\mu_n\nu_n} dx^{\nu_{p+1}} \wedge \ldots \wedge dx^{\nu_n} \Big)$$

$$\Delta_p = dd^{\dagger} + d^{\dagger}d = (d + d^{\dagger})^2, \qquad d^{\dagger} := (-1)^{np+n+1} \star d\star$$

Harmonic *p*-Form $\Delta_p A^p = 0 \xleftarrow{1:1} H^p_{deRham}(X)$

- On Hermitian M: Dolbeault Cohomology $H^{p,q}_{\bar{\partial}}(X)$: cohomology on $\bar{\partial}$ (similarly ∂) and $\Delta_{\partial} := \partial \partial^{\dagger} + \partial^{\dagger} \partial$ and similarly $\Delta_{\bar{\partial}}$
- On Kähler M: $\Delta = 2\Delta_{\partial} = 2\Delta_{\bar{\partial}}$, Hodge decomposition:

$$H^{i}(M) \simeq \bigoplus_{p+q=i} H^{p,q}(M)$$

Back to Calabi-Yau

Covariant Constant Spinor

- Define $J_m^n=i\eta_+^\dagger\gamma_m^n\eta_+=-i\eta_-^\dagger\gamma_m^n\eta_-$, check: $J_m^nJ_n^p=-\delta_m^n$
- (X^6, J) is thus almost-complex
- But η covariant constant $\rightsquigarrow \nabla_m J_n^p = 0 \rightsquigarrow \nabla N_{mn}^p = 0$ Nijenhuis tensor $N_{mn}^p := J_m^q \partial_{[q} J_{n]}^p - (m \leftrightarrow n)$
- (X^6, J) is thus complex $(J^n_m = i\delta^n_m, J^{\bar{n}}_{\bar{m}} = i\delta^{\bar{n}}_{\bar{m}}, J^n_{\bar{m}} = J^{\bar{n}}_m = 0$ for some local coordinates (z, \bar{z}) ; transition functions holomorphic)
- Define $J = \frac{1}{2}J_{mn}dx^m \wedge dx^n$ ($J_{mn} := J_m^k g_{kn}$) check: $dJ = (\partial + \bar{\partial})J = 0$
- (X^6, J) is thus Kähler

• summary X^6 is a Kähler manifold of dim_{\mathbb{C}} = 3, with SU(3) holonomy

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Back to Het

Famous CICYs

- The Quintic $Q = [4|5]^{1,101}_{-200}$ (or simply [5]);
- Tian-Yau Manifold: $TY = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}_{-18}^{14,23}$
 - no CICY has $\chi=\pm 6$
 - TY has freely-acting $\mathbb{Z}_3 \rightsquigarrow (TY/\mathbb{Z}_3)^{6,9}_{-6}$;
 - central to early string pheno [Distler, Greene, Ross, et al.]

• Schön Manifold:
$$S = \begin{pmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 3 \end{pmatrix}_{0}^{19,19}$$

has $\mathbb{Z}_3 \times \mathbb{Z}_3$ freely acting symmetry

《曰》 《聞》 《臣》 《臣》 三臣 …

- explored more recently;
- The quotient is $M_{3,3}^0$.

Back to CICYs

- Convex Lattice Polytope Δ (use Δ_n to emphasize dim n)
 - DEF1 (Vertex Rep): Convex hull of set S of k lattice points $p_i \in \mathbb{Z}^n \subset \mathbb{R}^n$

$$\operatorname{Conv}(S) = \left\{ \sum_{i=1}^{k} \alpha_i p_i | \alpha_i \ge 0, \ \sum_{i=1}^{k} \alpha_i = 1 \right\}$$

- DEF2 (Half-Plane Rep): intersection of integer inequalities $A \cdot \underline{x} \geq \underline{b}$
- {extremal pts = vertices, edges, 2-faces, 3-faces, ..., (n-1)-faces = facets, Δ }
- n = 2 polygons, n = 3 polyhedra, ...
- Polar Dual: $\Delta^{\circ} = \{ \underline{v} \in \mathbb{R}^n \mid \underline{m} \cdot \underline{v} \ge -1 \ \forall \underline{m} \in \Delta \}$
- Reflexive Δ : if Δ° is also convex lattice polytope
 - in general, vertices of Δ° are rational, not integer
 - duality: $(\Delta^{\circ})^{\circ} = \Delta$
 - if further $\Delta=\Delta^\circ,$ self-dual/self-reflexive

Reflexive Polytope: example

THM: Reflexive \Leftrightarrow single interior lattice point

(set to origin; all facets = hyperplanes of distance 1 away)

Toric Variety from Δ_n

- $\Sigma(\Delta_n)$ then defines a compact Toric variety $X(\Delta_n)$ of dim_C = n
- X(Δ) called Gorenstein Fano, i.e., -K_X is Cartier and ample, i.e., O(-K_X) is line bundle and X is positive curvature
- THM: $X(\Delta)$ smooth \Leftrightarrow generators of every cone σ is part of \mathbb{Z} -basis, i.e., $\det(\operatorname{gens}(\sigma)) = \pm 1 \xrightarrow{\text{Back to KS CY3}}$

Observatio Curiosa

- Penn group *purely abstract*, but $X_0^{19, 19} = \begin{pmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 3 \end{pmatrix}$, Tian-Yau: $\begin{pmatrix} 1 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$
- TRANSPOSES!!
- Why should the best manifold from 80's be so-simply related to the best manifold from completely different data-set and construction 20 years later ??
- Two manifolds are conifold transitions and vector bundles thereon transgress to one another ([Candelas-de la Ossa-YHH-Szendroi, 2008])
- Connectedness of the Heterotic Landscape
 - All CICY's are related by conifold transitions
 - Reid Conjecture: All CY3 are connected
 - Proposal: All (stable) vector bundles on all CY3 transgress

Back to Compactifications

・ロト ・日下・ ・ ヨト・

A Computational Approach

- Northeastern/Witts/Notre Dame/Cornell Collaboration: Programme to study the computational algebraic geometry of M: joint with M. Stillman, D. Grayson, H. Schenck (Macaulay 2), J. Hauenstein (Bertini), B. Nelson, V. Jejjala
 - **1** *n*-fields: start with polynomial ring $\mathbb{C}[\phi_1, \dots, \phi_n]$

3
$$D = \text{set of } k \text{ GIO's: } a \text{ ring map } \mathbb{C}[\phi_1, \dots, \phi_n] \stackrel{D}{\longrightarrow} \mathbb{C}[D_1, \dots, D_k]$$

One with the superpotential of the superp

 $\langle f_{i=1,\dots,n} = \frac{\partial W(\phi_i)}{\partial \phi_i} = 0 \rangle \simeq \text{ideal of } \mathbb{C}[\phi_1,\dots,\phi_k]$

Moduli space = image of the ring map

 $\frac{\mathbb{C}[\phi_1,\ldots,\phi_n]}{\{F=\langle f_1,\ldots,f_n\rangle\}} \stackrel{D=GIO}{\longrightarrow} \mathbb{C}[D_1,\ldots,D_k], \quad \mathcal{M}\simeq \mathrm{Im}(D)$

• Image is an ideal of $\mathbb{C}[D_1,\ldots,D_k]$, i.e.,

 $\mathcal M$ explicitly realised as an affine variety in $\mathbb C^k$

イロト イポト イヨト イヨ

Abelian Quotient: $\mathcal{M} = \mathbb{C}^3 / \Gamma$

- All abelian orbifolds are toric.
- Archetypal example: $\mathbb{C}^3/\mathbb{Z}_3$ with action $(1,1,1) \rightsquigarrow U(1)^3$ quiver theory

• loops: $3^3 = 27$ GIOs; arrows: 3×3 fields

 $\bullet\,$ Moduli space: 27 quadrics in $\mathbb{C}^{10},$ explicit equations for

 $\mathbb{C}^3/\mathbb{Z}_3 \simeq Tot(\mathcal{O}_{\mathbb{P}^2}(-3))$

Back to Toric Quivers

Notation for Affine Toric Variety Back to Toric Quivers		
Def		Example (Conifold)
Comb.:	Convex Cone $\sigma \in \mathbb{Z}^d \rightsquigarrow$ Dual Cone $\sigma^{\vee} \rightsquigarrow X =$ Spec _{Max} $\mathbb{C}[S_{\sigma} = x_i^{\text{gen}(\sigma^{\vee}) \cap \mathbb{Z}^d}]$ Toric Diagram = S_{σ}	$S_{\sigma} = \langle a = z, c = yz, b = xyz, d = xz \rangle$ $ab = cd \text{ in } \mathbb{C}^{4}[a, b, c, d]$
Symp:	Generalise \mathbb{P}^n : a $(\mathbb{C}^*)^{q-d}$ action on $\mathbb{C}^q_{[x_i]}$ $x_i \mapsto \lambda_a^{Q_{i=1\dots q}^{a=1\dots q-d}} x_i$ with Relations: $\sum_{i=1}^d Q_i^a v_i = 0$ Toric Diagram $= v_i$	$Q = [-1, -1, 1, 1]$ $\mathbb{C}^* \text{ on } \mathbb{C}^4 \rightsquigarrow$ $\ker Q = G_t =$ $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$
Comp:	Binomial Ideal $\langle \prod p_i = \prod q_j \rangle$	$ab = cd$ in \mathbb{C}^4
		◆□▶ <□▶ < □▶ < □▶ < □▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Tropical Geomtry: Amoebae & Algae

• Amoeba Projection $Log(z, w) \rightarrow (\log |z|, \log |w|)$

$$A = Amoeba(P(z,w) \subset (\mathbb{C}^*)^2) = Log(P) \subset \mathbb{R}^2 \rightsquigarrow$$

skeleton of A is the (p,q)-configuration

 $\bullet \ T^2$ of dimer model lives in the T^3 of mirror symmetry

- P(z,w) = 0 describes fiber Σ over s = 0 in mirror CY3
- (\bigcap 3-cycles) $\cap \Sigma$ at a graph Γ on $T^2 \subset T^3 \rightsquigarrow$ periodic tiling
- Alga Projection: $Arg(z, w) \rightarrow (\arg(z), \arg(w))$

$$Alga(P(z,w) \subset (\mathbb{C}^*)^2) = Arg(P) \subset [0,2\pi)^2 \rightsquigarrow$$

fundamental region of dimer

Back to Toric Quivers

Toric/Quiver/Seiberg Duality: Plethora of Examples

Perspectives on Seiberg Duality

- Mirror Picture Fuk(Y) (Type IIA)
 - D6-branes wrapping SL-k+3 cycles S_i in the mirror Y
 - Quiver = intersection matrix $A_{ij} = S_i \circ S_j$
 - Picard-Lefschetz $S_i \rightarrow S_i (S_i \circ S_{i_0})S_{i_0}$
- Derived Category $D^{\flat}(X)$ (Type IIB)
 - think of brane as support for coherent sheaf w/ $ch(F_i) := (rk, c_1, c_2)$

• Quiver:
$$A_{ij} = \chi(F_i, F_j) := \sum_m (-1)^m \dim_{\mathbb{C}} \operatorname{Ext}^m(F_i, F_j)$$

- mutation of exceptional collection of F_i
- Cluster Algebra
 - cluster mutation rules on cluster (matrix) variables
 - Gadde-Gukov-Putrov, Franco-Lee-Seong-Vafa, other dim.
 - relation to total positivity and Grassmannian? (cf. Arkani-Hamed, Cachazo,

Bourjaily, Trnka et al.; Franco (BFT))

Learning Curve: WP4

《曰》 《聞》 《臣》 《臣》 三臣

Return

Learning Curve: CICY

<ロト (四) (三) (三) (三)

2

Return

KS Dataset: Gradus ad Parnasum

- \bullet 4319 reflexive Δ_3 correspond to compact K3 surfaces or non-compact CY3
- Each is an integer matrix (padded) 3×39 with entries in [0, 28], pixelate with 28 shades of colour

- Data size not so big for n=3; training against for example, Sasaki-Einstein Volume or Picard Number achieves $\sim 60\%$ accuracy in a few minutes
- **GOAL:** to learn from geometrical quantities in a subset of $\sim 10^{5-6}$ (currently within computer power) to predict the full $\sim 10^{10} \Delta_4$ (currently beyond computer power) (to do ...)

- Infinite number of theories: any convex lattice polygon → non-compact CY3 which D3-brane can probe; 2 databases so far:
 - Davey-Hanany-Pasukonis, 2009 (by terms in superpotential);
 - updated and expanded Chuang-Franco-YHH-Xiao, 2017 (by area of polygon)
- computationally hard: finding dual cone exponential-running; even with dimer/brane-tiling technology, Higgsing/perfect-matchings time-consuming
- Try on dataset1, (small) size = 375
 - INPUT: combined integer matrix Q_{DF}: incidence matrix from D-terms; exponent matrix from F-terms
 - OUTPUT: e.g., # gauge groups (train 100, predicts to $\sim 97\%$) Learning Curves
- TO DO: use this to predict unknown gauge theory given big toric diagrams

Back to CICYs

イロト イポト イヨト イヨ

Learning Curves

▲ロト ▲団ト ▲ヨト ▲ヨト ヨー のへで