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Classical character vareities
● G = reductive algebraic group, e.g. 

● S = surface, M = 3-manifold.

● The G-character variety of S is:

● Atiyah-Bott-Goldman Poisson bracket

– Poincare:

– Killing form:

● Universal property/compatibility with pullback

● Lagrangians from 3-manifolds with boundary
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Outline

● Recall three well-known quantizations: Alexeev-Grosse-Schomerus, Fock-
Goncharov, and skein modules.

● Define universal quantizations.

● Recover well-known schemes from the univeral one.

● Construct extended 3D&4D topological field theories.

● (Expected) relations to WRT/Hennings theory.

● Special phenomena at roots of unity.



  

Quantizations of character varieties 
● Moduli algebra quantizations

– Fock-Rosly: compute Poisson bracket using
ribbon graph presentation of S and classical r-matrices

– AGS:  Quantize Fock-Rosly bracket
using quantum R-matrices

● Quantum cluster algebras
– Fock-Goncharov:  Instead consider

framed character varieties, with reduction to Borel
subgroups B along boundaries.

– Triangulation  Cluster variables →

– Quantization  →

● Skein algebra (Turaev, Frohman-Gelca, ...)
– Sk(M) = Vector space spanned by all tangles in M,

modulo local “skein” relations from  

– Sk(S) = Sk(S x I) = Algebra under concatenation/
superposition operation.
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Choices, choices, choices...
● Each quantization scheme above involved making choices (ribbon graph, triangulation, skein 

presentation) in the definition.

● These choices are obstacles to defining a TFT; it is not enough to show that the construction is 
independent of choices, it must be functorial.

● It is difficult to compare the quantizations each produces, though they are expected to coincide, and 
some such coincidences are known.

● It is unclear/unknown how to extend AGS/FG to closed surfaces or to 3-manifolds.

● It is difficult to compute globally with FG/Skeins.

● And yet, classical character varieties are universal:

– Functoriality:

– Excision:  

– Normalization:  

● Ben-Zvi-Francis-Nadler:            is uniquely determined by these properties.

● Caution:  really, this holds for the character stack, but we don’t distinguish.  We have always a 
global sections functor Γ from the character stack to the character variety.
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A universal quantization
● So, we define a category Z(S) of “quasi-coherent sheaves” on the “quantum character variety”, 

by requiring:
– Functoriality:

– Isotopies:  

– Excision:
  

– Normalization:  

● Rigorous construction uses “factorization homology” of Lurie/Ayala-Francis-Tanaka.

● Braid group and mapping class group actions emerge naturally from isotopies of embeddings.

● Z(S) has a distinguished object               , the “quantum structure sheaf” and “global sections 
functor” Γ.

● Theorem (Ben-Zvi-Brochier-J ‘15):
–                                                         (Hochschild homology, uses Lyubashenko-Majid  

                                                             CoEnd/braided duals)

– Ribbon graph presentation of S                                              , recovering AGS algebras.

● Theorem (BZBJ ‘16):  For S closed surface, Z(S) is the quantum Hamiltonian reduction of 
A_S-mod, for an explicitly given multiplicative quantum moment map.
– Recovers and generalizes Frohman-Gelca: 

– Adding “mirabolic”/Ruijenars-Snijder marked point  Type A spherical double affine Hecke algebras. →
(Balagovic-J ‘16)
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Module structures on Z(S)
● Choice of disk in boundary of S 

● Get an adjoint pair of module functors: 

● Choice of boundary compontent Z(Ann)-action on Z(S)  quantum moment maps.→

● Standard techniques (“Barr-Beck”)  compute Z(S) recursively using excision.→

FRT algebra

RE algebra

Heisenberg double

AGS algebras

Quantum Hamiltonian
Reduction             



  

Recovering Fock-Goncharov

Gluing of quantum torus
charts

Theorem (J-Le-Schrader-Shapiro ‘19):  There exist canonical objects          in stratified 
quantum character varieties         , and isomorphisms between                   and the 
associated FG chart.
Corollary: AGS and FG quantizations coincide (“quantum trace maps”, in any type).



  

Recovering Fock-Goncharov

Gluing of quantum torus
charts

Theorem (J-Le-Schrader-Shapiro ‘19):  There exist canonical objects          in stratified 
quantum character varieties         , and isomorphisms between                   and the 
associated FG chart.
Corollary: AGS and FG quantizations coincide, upon localizing (quantum cluster 
embeddings of AGS algebras).



  

Three-dimensional structures
● Haugseng, Johnson-Freyd-Scheimbauer:  Braided tensor categories naturally 

form BrTens, a 4-category (iterated Segal space)

  

Objects: braided tensor categories 1-morphisms: A-B-central tensor categories

2-morphisms: A-B-central C-D-bimodules

3-morphisms: bimodule functors 4-morphisms: bimodule natural transformations



  

Three-dimensional structures
● Cobordism hypothesis:  fully extended n-dimensional TFT’s correspond to n-

dualizable objects of BrTens.

● Theorem (Brochier-J-Snyder ‘18):  Rigid braided tensor categories with enough 
compact projectives are 3-dualizable in BrTens.
– This includes           , for q generic (semisimple).

– Also Lusztig’s divided powers/restricted              , for q a root of unity (H.H. Andersen).

– Also modular tensor category obtained from                by quotienting neglibles.

● Theorem (BJS ‘18):  Modular tensor categories are 4-dualizable, and invertible 
(known to Freed-Teleman and Walker in different language).

● Hence by the Corbordism Hypothesis, we obtain a fully local (a.k.a. fully 
extended) TFT Z: Bord3+ε/4  BrTens.  In other words,→

– To closed 4-manifolds W, it assigns numbers Z(W) (in modular case).

– To closed 3-manifolds M, it assigns a vector space Z(M).

– To closed surfaces S, it assigns a category Z(S), the quantum character variety.

– To the circle it assigns a monoidal category Z(S^1) = HH(Rep_q(G))

– To the point it assigns the braided monoidal category Rep_q(G)  



  

Quantum A-polynomial
● Let K be a knot in S3, let M denote the knot complement.  Since             ,  M 

defines functors,

● Have a global sections functor,

● In other words, from a knot K, we get a system of difference equations, which q-
deforms the classical A-polynomial  canonical construction of (some kind of) →
quantum A-polynomial.

● Note:  Colored Jones J(K) is an element of ZWRT(T2) obtained in the same way.  
One can view J(K) as an element of the q-difference system               .



  

Relative field theories, Z, and WRT
● Let 1 denote the trivial TFT in BrTens.

● Definition (Freed-Teleman/Gwilliam-Scheimbauer/Fuchs-Schweigert):
A relative field theory is given by a dualizable morphism Repq(G) to 1 in 
BrTens.

● Any braided tensor category, regarded as a central algebra over itself defines 
such a relative field theory.

● Expectation (many people):  The WRT 3D TFT is a relative field theory relative 
to the 4D TFT we constructed above.

● Consequence (of exp.):  The colored Jones polynomial J(K) is naturally an 
element in the “quantum A-polynomial” system we defined above.

● Consequence (of exp.):  Alternative construction of Hennings invariant 3D 
TQFT.



  

Skein modules and roots of unity
● Theorem (Cooke, 18):  The subcategory of compact projective objects of Z(S) is 

the skein category, when q is not a root of unity.

– Corollary: Skein = FG = AGS (quantum trace maps of Bonahon-Wong)

● Work in progress (BJS):  The skein category is a full (and proper!) subcategory 
of Z(S), when q is a root of unity.  Uses theory of tilting modules.

● Theorem (Ganev-J ‘18):  The affine quantum character variety          is an 
Azumaya algebra over the classical character variety.  Methods:

– Use quantum Frobenius functor Rep(G)  Rep→ q(G).

– Use functoriality of quantum character variety.

– Use Brown-Gordon theory of quantum Poisson orders.

– Prove that quantum Hamiltonian reduction of Azumaya algebras is Azumaya.

● Corollary (combining C, BJS, GJ):  Skein algebras at roots of unity are Azumaya 
algebras over their classical counterparts.  (a theorem of Bonahon-Wong for SL2) 



  

Summary
● Character varieties satisfy a simple universal property with respect to 

embeddings of surfaces.

● Replacing Rep(G) by Repq(G) in universal property gives universal quantization.

● Making further choices one recovers each of the AGS/FG/Skein module 
presentation.

● Main tools for computing are excision (topology) and Barr-Beck (rep. theory).

● Gives conceptual explanation for mapping class group symmetry, braid group 
actions, (certain) cluster transformations.

● Gives extended/fully local 3- or 4-dimensional TFT, possibility to use TFT 
techniques in studying quantum A-polynomial.

● Subtle interesting behavior at roots of unity – no skein description, but observed 
Azumaya algebra phenomena.
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