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Poisson tensor metric (flat) Poisson conn

If does not exist flat conn =>   non assoc ext. algebra{extra cotangent dimensions

E.g. 

1

2

0 (A,⌦, d, g,r, ...)

! Poisson structure (ABGN) g Kahler
M = ch(S) = {⇡1(S) ! G}/G = {G� bun, flat conn}



Ω
1 a((db)c)=(a(db))c `bimodule’

d : A → Ω
1 d(ab)=(da)b+a(db) `Leibniz rule’

space of 1-forms, e.g. `differentials’

Quantum differentials on an algebra A

require this to extend to a DGA Ω = TAΩ
1/I = ⊕nΩ

n, d
2

= 0

`surjectivity’{
∑

adb} = Ω
1

ker d = k.1 (`connected’)

Classically, C1(M) = ⌦0(M) ⇢ ⌦(M) = �i⌦
i(M)

⌦1
df =

X

i

@f

@xi
dxi

fdg = (dg)f 2 ⌦1

^ : ⌦⌦A ⌦ ! ⌦, d(! ^ ⌘) = (d!) ^ ⌘ + (�1)|!|! ^ d⌘

! ^ ⌘ = (�1)|!||⌘|⌘ ^ !, d2 = 0

algebra A over    we drop the (graded) commutativity, just keep:k

`graded Leibniz rule’

inner if exists ✓ 2 ⌦1, d = [✓, }



Thm   
bicovariant

Ω1(U(g)) ↔ Z1(g,Λ1)

surjective 
pre-Lie algebra  

◦ : g⊗ g → g [x, y] = x ◦ y − y ◦ x
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Next we recall that a left pre-Lie algebra (also called Vinberg algebra) is defined
to be a vector space V equipped with a necessarily associative ‘product’ map ⇤ :
V ⇥ V ⇧ V s.t.

(4.4) (x ⇤ y) ⇤ z � (y ⇤ x) ⇤ z = x ⇤ (y ⇤ z)� y ⇤ (x ⇤ z).

In this case, V is necessarily a Lie algebra with Lie bracket given by

(4.5) [x, y]V := x ⇤ y � y ⇤ x

for all x, y ⌃ V , where the Jacobi identity holds due to (4.4.

Corollary 4.2. A connected and simply connected Poisson-Lie group G with Lie
algebra g admits a compatible left-invariant flat preconnection if and only if g�

admits a pre-Lie structure via �. This is bicovariant i� � obeys (3.3).

Proof. This is shown by (2.6) and (4.3) and is an interpretation of the preceding
Theorem 4.1. �

Note the first part does not seem to depend on the Lie algebra structure of g itself
*** seems remarkable, should check ***

Example 4.3. Let m be a finite-dimensional Lie algebra and G = m� be an abelian
Poisson-Lie group with its Kirillov-Kostant Poisson-Lie group structure {x, y} =
[x, y] for all x, y ⌃ m ⌅ C⇥(m�) or S(m) in an algebraic context. By Corollary 4.2,
this admits a compatible left-invariant flat preconnection i⇥ m admits a pre-Lie
algebra structure. Here � = ⇤ and

�x̂dy = d(x ⇤ y), ⌥x, y ⌃ m.

In fact the algebra and calculus in this example works to all orders. Thus the
quantisation of m� is U(m) regarded as a noncommutative coordinate algebra with
relations xy � yx = ⇥[x, y]. If m has an underlying pre-Lie algebra then the above
results lead to relations

[x, dy] = ⇥d(x ⇤ y), ⌥x, y ⌃ m

and one can check that this works exactly and not only to order ⇥ precisely as a con-
sequence of the pre-Lie algebra axiom. Indeed, according to [our paper] bicovariant
calculi on U(m) with left-invariant 1-forms m are classified by invertible 1-cocycles
in Z(m,m) and it is known ***reference needed*** that the latter correspond to
pre-Lie algebra structures for m.

Example 4.4. Let g be a quasi-triangular bialgebra with r-matrix r = r(1)⇥r(2) ⌃
g⇥ g. Then g acts on its dual g� by coadjoint action ad� and by Lemma 3.8 in [18]
g� becomes a left g-crossed module with �(⇤,⌅) = �⌦⇤, r(2)↵adr(1)⌅. To satisfy
compatibility (2.6), (g, r) is required to obey r+⇧x = 0 for any x ⌃ g, where
r+ = (r + r21)/2 is the symmetric part of r. In this case g� has a pre-Lie algebra
structure with �(⇤,⌅) = �⌦⇤, r(2)↵ad�r(1)⌅ by Corollary 4.2. We see in particular
that every finite-dimensional cotriangular Lie bialgebra is canonically a pre-Lie
algebra.

e.g. 

dx = 1⊗ ζ(x), Ω1 = U(g)⊗Λ1

⇒ Ω(U(g))

ζ ∈

by skew-symmetrisation of products of ⇤1

Nice problem: take your favourite algebra and classify all 
differential structures (perhaps with some symmetry)

[x, dy] = d(x � y)

Example                         (see later)[r, t] = λrg :

Example                          and torsion free flat connection g = Vect(M)

x � y = rxy, r[x,y]z = rxryz �ryrxz

⇤1 ={dy | y 2 g} ⇠= g

[x, y] = rxy �ryxA = U(di↵(M))

bicovariant connected classical dim
↔



Example                                               comm associative algebra g = V, [ , ] = 0, (V, �)

e.g. V = C1(M) A = Cpoly(V ) [f, dg] = d(fg)

e.g. V = C.x, x � x = �x, A = C[x], [x, dx] = �dx

=>  df(x) =
f(x)� f(x� �x)

�
dx

dx2 = (dx)x+ xdx = 2xdx� �dx = (2x� �)dx

Propn       discrete set                           directed graphs on                    ⌦1(C(X))X ↔ X

df =
X

x!y

(f(y)� f(x))!x!yf.!x!y = f(x)!x!y,!x!y.f = f(y)!x!y

⌦1 = spank{!x!y}

g =
X

x!y

gx!y!x!y ⌦C(X) !y!x gx!y 2 k `metric lengths’

If a graph is bidirected, define



g ∈ Ω
1
⊗
A

Ω
1

( , ) : Ω1
⊗
A

Ω1
→ A

need this to be able to contract/ `raise/lower’ via metric, eg to have 
well defined contraction:

∧(g) = 0 `quantum symmetric’

invertible in the sense exists inverse:              

Ω
1
⊗
A

Ω
1
⊗
A

Ω
1
→ Ω

1
Tµνρ !→ gµνTµνρ

“                               “

a(ω, η) = (aω, η), (ω, η)a = (ω, ηa) `bimodule map (tensorial)’

( , )⊗ id :

(( , )⊗ id)(ω⊗ g) = ω = (id⊗( , ))(g⊗ω), ∀ω ∈ Ω1

but

(ω, g
1)g2

a = ωa = (ωa, g
1)g2 = (ω, ag

1)g2

g = g
1
⊗
A

g
2

(ω, g
1)g2 = ω

⇒

⇒ ag = ga, ∀a ∈ A  need metric to be central

Quantum metrics g = gµ⌫dx
µ ⌦A dx⌫



 Connections and curvature

such connections extend to tensor products

∇(fω) = df ⊗ω + f∇ω

∇(ω⊗ η) = ∇ω⊗ η + (σ⊗ id)(ω⊗∇η)

σ : Ω
1
⊗
A

Ω
1
→ Ω

1
⊗
A

Ω
1

bimodule connection:

∇(ωf) = σ(ω⊗df) + (∇ω)f

(Michor, Dubois-Violette, …)

∇ : Ω
1 → Ω

1 ⊗
A

Ω
1

ω⊗ η ∈ Ω
1
⊗
A

Ω
1

more generally rE : E ! ⌦1 ⌦A E, �E : E ⌦A ⌦1 ! ⌦1 ⌦A E

AEA = {(E,rE ,�E)} is a monoidal category by ⌦A

Classically, a connection assigns a covariant derivative  

rx : Vect(M) ! Vect(M), 8x 2 Vect(M)

rx : ⌦1(M) ! ⌦1(M)

Similarly for any differential algebra (A,⌦1, d)

(Quillen, Karoubi,…)

rdxµ = ��µ
⌫⇢dx

⌫ ⌦A dx⇢

(Christoffel symbols)



T∇ = ∧∇− dT∇ : Ω
1
→ Ω

2

∇g = 0`metric compatible’ now makes sense

torsion free also makes sense

quantum Levi-Civita connection (QLC)

`weak quantum Levi-Civita’ needs only a left connection, torsion free and 
cotorsion free: coTr = (d⌦ id� (^ ⌦A id)(id⌦A r))g = 0

R∇ = (d⊗
A

id − (∧⊗
A

id)(id⊗
A

∇))∇R∇ : Ω
1
→ Ω

2
⊗
A

Ω
1

Curvature

Lemma:   (1st Bianchi identity) ^(Rr) = d � Tr � (^ ⌦ id)(id⌦ Tr)r

Tr = rg = 0

Laplacian � : A ! A, � = ( , )rd



2.1 Example of 2D nonabelian Lie algebra 

g :

ii) r ◦ t = βr, t ◦ r = (β − 1)r, t ◦ t = βt

iii) t ◦ r = −r, t ◦ t = r − t

iv) r ◦ r = t, t ◦ r = −r, t ◦ t = −2t

v) r ◦ t = r, t ◦ t = r + t

[r, t] = r

i) t ◦ r = −r, t ◦ t = αt

A : [r, t] = �r

(Burde)
} included in i), ii) if we allow

logarithms etc   

} just two essentially different 
differential structures2 SHAHN MAJID & EJB

formalism of noncommutative Riemannian geometry. We then weaken this by re-
quiring only that g commutes with functions of the radius r =

�
x2
1 + x2

2 + x2
3 and

t and in this case we find a reasonable 2-parameter family of quantum metrics

(1.3) g = r2d�+ adr ⇥⇥dr + b (v� ⇥ v + ⇥(dr ⇥ v � v� ⇥ dr))

in polar coordinates, where the parameters a, b ⌅= 0 are real and v = rdt � tdr,
v� = (dt)r � (dr)t. The first term of g is the angular part of the metric as for flat
spacetime.

We will not actually develop the quantum geometry of such metrics in this paper,
rather we first want to understand their classical limit ⇥ ⇤ 0. We find that the
geometry in this limit is curved and for critical values a = 1 and a = �3 we find
that the Einstein tensor matches Einstein’s equation for a perfect fluid of a certain
pressure ad density depending on b. This gives a physical interpretation as the
Universe being filled with one of these two (albeit not very physical) types of fluid
as a plausible necessity of the existence of noncommutative geometry.

We also find that the classical metric is, after a change of variables a⇥orded by
our geodesic flows, a conformal rescaling of a flat metric. Although we regard the
model here as a toy model or ‘proof of concept’ we believe the rigidity phenomenon
uncovered here to be a generic feature of quantum spacetimes.

As a small application back to noncommutative geometry, the geodesic coordinates
suggest new variables for the quantum algebra and its calculus, and we describe
them in Section 4.

2. Moduli of quantum metrics

We shall use polar coordinates for the bicrossproduct model spacetime[?] where we
replace dxi by ⇤i = eijdxj where eij = �ij � xixj

r2 is projection to the sphere of
constant radius at any point and r2 = xixi. One has xi⇤i = 0. The angular part
of the metric above is ⇤i ⇥ ⇤i. The polar coordinate relations become

[f(r), t] = ⇥rf ⇥(r), [
xi

r
, t] = 0, [f(t), r] = (f(t)� f(t+ ⇥))r

for the algebra, for any function f , and

[⇤i, t] = [⇤i, r] = [dr, t] = [dr, r] = 0

[f(r), dt] = ⇥f ⇥(r)dr, [f(t), dt] = (f(t)� f(t� ⇥))dt.

The relations between 1-forms in the exterior algebra are as classically [?]

{⇤i,⇤j} = {⇤i, dr} = {⇤i, dt} = {dt, dr} = (dr)2 = (dt)2 = 0.

Working with this polar coordinate description one can verify the following lemma.
Since commutation with t entails a shift by ⇥, functions of t that are invariant
under such a shift will automatically be central, we call them ‘periodic’ (depending
on the precise formulation of the algebra completion there may not be any).

Lemma 2.1. In the radial-time sector and up to functions periodic in t, the central
1-forms are linear combinations of dr and v = rdt� tdr.

g = dr⊗dr + b(v∗ ⊗ v + λ(dr⊗ v − v∗ ⊗dr))
b ∈ R

v
∗ = (dt)r − tdr

b ̸= 0

in classical limit      

=> unique form of quantum metric

Ricci =
g

r2

 Case (ii)   

 Class. Quant. Gravity 
31 (2014) (w/ Beggs)            

� = 1

∇dr =
1

r

(

v −
λdr

2

)

⊗

(

(
8b

4 + 7bλ2
)v − (

12bλ

4 + 7bλ2
)dr

)

=> Unique Levi-Civita soln with classical limit:

all timelike geodesic pulled back to r=0

 Case (i)   => unique form of metric AdS or dS, unique QLC with classical limit                                       

 Phys. Rev. D 91 (2015)  (w/Tao)            



b > 0

b < 0

=> Moduli of real quantum metric-compatible     a line +  conic∇

black parts have classical limit as λ → 0

red parts blow up as              so not visible classicallyλ → 0

in each case a unique `q. Levi-Civita point’ where torsion T=0

∇dr =
bv

r
⊗

(

(
1

1 + bλ2
)v − (

2

λ
)dr

)

+ (
2 + bλ2

r(1 + bλ2)
)dr⊗

(

−(
1

λ
)v + (

3

2
)dr

)



 Cayley graph on ad-stable set generators       of a group

x → xa, a ∈ Cedges:

left-invariant 
1-forms:

eaf = Ra(f)ea, df =
∑

a∈C

∂a(f)ea

∂
a

= Ra − id

Ω
1

⇒ Ω θ =

∑

a∈C

ead = [θ, }

2.2 Example of quantum geometry of a quadrilateral  

C = {1 = (1, 0), 2 = (0, 1)}

C X

ea =
X

x2X

!x!xa

X = Z2 × Z2
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in

e
2

a = 0, eaeb + ebea = 0

dea = 0

g = ae1 ⊗ e1 + be2 ⊗ e2

for some functions a,b

It is natural to suppose    
symmetric `lengths’: ∂

1
a = ∂

2
b = 0

g

=> metric



=> 1-parameter moduli space of torsion free metric compatible 
connection, with curvature:
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which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
which case ⇥ = 0). This would be relevant to quantum teleparallel gravity, but for
some kind of Levi-Civita connection we have to work harder. We have recognised
the expressions in terms of the braiding ⇥ on the space �1 of basic 1-forms.

Example 6.3. [?] (Riemannian geometry of a square.) We take G = Z2 ⇤Z2 with
its canonical 2D calculus. This is the universal calculus (i.e. the only choice) on
each copy of Z2 and has Cayley graph a square with vertices 00,01,10,11 say in
an abbreviated notation for cartesian coordinates in Z2. There are correspondingly
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coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01

10

11a01 = g01�11

a00 = g00�10
g00�10 = a10

g01�11 = a11

g00�01 = b01

g10�11 = b11b00 = g00�01
b10 = g10�11

e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
parameter family of quantum Levi-Civita connections, i.e. torsion free and metric
compatible. These are computed in [?] using Lemma 6.1 as

⌅(e1⌅e1) = �Q�1e1⌅e1+b(R2⇥ � 1)
a

e2⌅e2, ⌅(e2⌅e2) = Qe2⌅e2+a(R1� � 1)
b

e1⌅e1
⌅(e1 ⌅ e2) = �e2 ⌅ e1 + (� � 1)e1 ⌅ e2, ⌅(e2 ⌅ e1) = ⇥e1 ⌅ e2 + (⇥ � 1)e2 ⌅ e1

with the connection then being given as ⇥⇧ = ⇤ ⌅ ⇧ � ⌅(⇧ ⌅ ⇤) for any 1-form ⇧.
Here ⇤ = e1 + e2 makes the calculus inner and Q,�,⇥ are functions on the group
defined as

Q = (q, q�1, q�1, q) = q(�1)i+j , � = (a01
a00

,1,1,
a00
a01
), ⇥ = (1, b10

b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in
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order 11,12,21,22, the matrix is

⌅ =
�⇧⇧⇧⇧⇤

⇥Q�1 0 0 a(R1��1)
b

0 � ⇥ 1 ⇥ 0
0 � ⇥ ⇥ 1 0

b(R2⇥�1)
a 0 0 Q

⇥⌃⌃⌃⌃⌅
What we have coming out of the geometry is a field of such ‘generalised braiding’
matrices because the entries here are functions on the group. The eigenvalues are⇥1,�⇥,⇥(⇥1)i+jq�1, (⇥1)i+jq at the point (i, j). For the Euclidean metric the �⇥
eigenvalue is 1 but otherwise it depends on how the metric weights vary. Notice
that these ‘generalised braidings’ have a broadly 8-vertex form normally associated
with quantum integrable systems but here arising very naturally out of nothing
but the quantum Riemannian geometry of the square and inhomogeneity of the
metric. The curvature of the connection computed from Lemma 6.1 is non-zero
with contributions both from q � 1 and from nonconstancy of the metric coe⇤cients.
Details will be in [?].

In addition to the above connection, the Maurer Cartan connection given by ⌅ the
flip map and ⇤ = 0 works for the Euclidean metric as the group is abelian and in the
present case can similarly be extended to a 1-parameter family with a parameter
q so as to be compatible with the above symmetric class of metrics. However, this
variant of the above acquires torsion when the metric coe⇤cients are not constant.

Example 6.4. [3, ?] (Riemannian geometry of the permutation group) For G = S3

with its 3D calculus given by 2-cycles it is shown in [?] that there is no bicovariant
choice of ⇤ that is �-compatible, metric-preserving and torsion free. However, just
as we saw with Cq(S2) above, there are solutions if we ask only for the weaker re-
quirement of cotorsion free. In this case there is found a 1-parameter moduli space
of such connection. Likewise in the quantum frame bundle approach there is a
unique torsion free cotorsion free quantum connection that obeys a certain regular-
ity property (basically that the gauge field has values in the associated braided-Lie
algebra of the permutation group)[?]. We now write this connection in the form

⇤ec = ⇥�
b

eb ⇧ ebcb + 1

3
⇤ ⇧ ⇤ = ⇥��1(ec ⇧ ⇤) + 1

3
⇤ ⇧ ⇤.

This is indeed a bimodule connection as in Lemma 6.1, as it must be, namely with

⌅(ea ⇧ eb) = ⇥1
3
�

cd=ab
ec ⇧ ed + eaba ⇧ ea + eb ⇧ ebab.

For a, b 2-cycles in S3 one has aba = bab so one can write the latter expressions
di⇥erently. The last two terms are �(ea ⇧ eb) +��1(ea ⇧ eb). The key observation
if you want to check ⌅(id + ⌅) = 0 for yourself is that �3 = id. *** is it star
compatible***

The Riemann tensor of this connection in current conventions is then

R⇥ec = ⇥�
b

deb ⇧ ebcb = ⇥(d⇧ id)��1(ec ⇧ ⇤)
and there is a canonical lifting map i is computed in [?] as

i(ea ⌅ eb) = ea ⇧ eb ⇥ 1

3
�

cd=ab
ec ⇧ ed

A QUANTUM SPACETIME TOOLKIT 49
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two generators e1, e2 with relations and di⇤erential

eif = Ri(f)ei, df = (⌃1f)e1 + (⌃2f)e2
where as usual R1f shifts by 1 mod 2 (i.e. takes the other point) in the first
coordinate, similarly for R2, and ⌃i = Ri � id. The exterior algebra is the usual
Grassmann algebra on the ei because the group is Abelian. The general form of a
central metric is

g = ae1 ⌅ e1 + be2 ⌅ e2

where the a, b are functions. In terms of the graph their 8 values are equivalent to
the values g on the 8 arrows as shown:

00

01
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g00�10 = a10

g01�11 = a11
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e1

e1

e2 e2

So the Euclidean metric corresponds to a = b = 1 constant. We do not assume this.
It is natural, however, to focus on the symmetric case where the metric weight
assigned to an edge does not depend on the direction of the arrow. This means
⌃1a = ⌃2b = 0 and we assume this now for simplicity. In this case there is a 1-
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compatible. These are computed in [?] using Lemma 6.1 as
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,1,1,
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b00
,
b00
b10

,1)
where we list the values on the points in the same binary sequence as above. Here
q is a free parameter. If we write ⌅ as a matrix ⌅i1i2

j1j2
where the multindices are in

A QUANTUM SPACETIME TOOLKIT 49

which is metric compatible with the Euclidean metric, has R⇥ = 0 but typically
has non-zero torsion (unless the braiding is trivial, as when the group is abelian, in
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The connection is given as ∇! = ✓ ⊗ ! − �(! ⊗ ✓) for any 1-form !, so that in
particular

∇e1 = (1 +Q−1)e1 ⊗ e1 + (1 − ↵)(e1 ⊗ e2 + e2 ⊗ e1) −
b

a
(R2� − 1)e2 ⊗ e2.

∇e2 = −
a

b
(R1↵ − 1)e1 ⊗ e1 + (1 − �)(e1 ⊗ e2 + e2 ⊗ e1) + (1 −Q)e2 ⊗ e2.

with curvature

R∇e1 = �Q−1R1↵ −Q↵ + (1 − ↵)(R1� − 1) + R2a

a
(R2� − 1)(R2R1↵ − 1)�Vol⊗ e1

+�Q−1(1 − ↵) + ↵(R2↵ − 1) +Q−1
R1b

a
(�−1 − 1)) + b

a
(R2� − 1)R2��Vol⊗ e2

where Vol = e1 ∧ e2, and a similar formula for R∇e2 interchanging e1, e2; R1,R2;
↵,�; a, b and Q,−Q−1. One can discern contributions from q ≠ 1 and from a, b
non-constant. The connection is ∗-preserving if � ○ † ○ � = † by Proposition 8.11
which comes down to the condition

(233) �q� = 1

so that in particular the function Q −Q−1 is pointwise imaginary.
To discuss the Ricci tensor we need a lifting map i and the canonical choice for

our exterior algebra (where ei anticommute) is i(Vol) = 1
2(e1 ⊗ e2 − e2 ⊗ e1). For

the ‘purely quantum’ case where q ≠ 1 and a, b are constant, the metric compatible
torsion free connection and its curvature reduce to

∇e1 = (1 +Q−1)e1 ⊗ e1, ∇e2 = (1 −Q)e2 ⊗ e2

R∇e1 = −(Q −Q−1)Vol⊗ e1, R∇e2 = (Q −Q−1)Vol⊗ e2

as the intrinsic quantum Riemannian geometry of Z2×Z2 with its Euclidean metric.
We find then that

Ricci = Q −Q−1

2
(e1 ⊗ e2 + e2 ⊗ e1), S = 0

which we see is quantum symmetric but does not obey the same reality condition
as the metric if we impose (233) needed for the connection to obey its ‘reality’
condition. This is a purely quantum e↵ect since classically there would be no
curvature when a, b are constant. The opposite ‘classical’ special case where q = 1
but the metric is given by general a, b similarly gives a simpler R∇, and Ricci with
matrix of coe�cients to the left comes out as

(234) Ricci = 1

2

�
��
�

1
b (−

@2a
↵ + �@1b

� ) −@1b
b (↵ +

1
↵ − � − 2)

−@2a
a (� +

1
� − � − 2) 1

a(−
@2a
↵ + �@1b

� )

�
��
�

.

This has both quantum symmetry and ‘reality’ issues but a perfectly reasonable
scaler curvature

(235) S = 1

ab
�−@2a

↵
+ �

@1b

�
� .

We have described two complementary special cases; the general case has features
of both, i.e. two sources of curvature namely from q ≠ 1 and nonconstant a, b.

=> connection
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curvature



=> geometric Laplacian
12 S. MAJID

The Laplacian for the above QLC’s are computed as

�f = ( , )∇(@ifei) = −2

a
@1f − 2

b
@2f + @if( , )∇ei = �Q−1 −R2�

a
�@1f − �Q +R1↵

b
�@2f

using our formula for ∇, the connection property, and @2
i = −2@i. The curvatures

are given by

R∇e1 =�Q−1R1↵ −Q↵ + (1 − ↵)(R1� − 1) + R2a

a
(R2� − 1)(R2R1↵ − 1)�Vol⊗ e1

+ �Q−1(1 − ↵) + ↵(R2↵ − 1) +Q−1 R1b

a
(�−1 − 1)) + b

a
(R2� − 1)R2��Vol⊗ e2

where Vol = e1 ∧ e2, and a similar formula for R∇e2 interchanging e1, e2; R1,R2;
↵,�; a, b and Q,−Q−1 (so that Vol also changes sign). One can discern contributions
from q ≠ 1 and from a, b non-constant. The connection reality condition comes down
to

(7) �q� = 1

so that in particular the function Q −Q−1 is pointwise imaginary.

Next we find the Ricci tensor defined by a lifting map i, for which in our case there
is a canonical choice i(Vol) = 1

2(e1 ⊗ e2 − e2 ⊗ e1). If we write R∇ei = ⇢ijVol ⊗ ej

then

Ricci = (( , )⊗ id)(id⊗ i⊗ id)(id⊗R∇)(g) = 1

2
�−R2⇢21 −R2⇢22

R1⇢11 R1⇢12
�

as the matrix of coe�cients on the left in our tensor product basis. Applying ( , )
again, we have scalar curvature

S = 1

2
�−R2⇢21

a
+ R1⇢12

b
�

which is invariant under the interchange above. For the simplest case where q ≠ 1
and a, b are constant, the QLCs and their curvature reduce to

∇e1 = (1 +Q−1)e1 ⊗ e1, ∇e2 = (1 −Q)e2 ⊗ e2

R∇e1 = −(Q −Q−1)Vol⊗ e1, R∇e2 = (Q −Q−1)Vol⊗ e2

as the intrinsic quantum Riemannian geometry of Z2 × Z2 with its rectangular
metric. This has

Ricci = Q −Q−1
2

(e1 ⊗ e2 + e2 ⊗ e1), S = 0

which we see is quantum symmetric but does not obey the same reality condition as
the metric if we impose (7) needed for the connection to obey its ‘reality’ condition.

The general Ricci curvature is more complicated but for q = 1, say, it has values

(8) Ricciq=1 = 1

2
� 1

b (−@2a
↵ + �@1b

� ) −@1b
b (↵ + 1

↵ − � − 2)
−@2a

a (� + 1
� − � − 2) 1

a(−@2a
↵ + �@1b

� ) �
for the matrix of coe�cients. This is in general neither quantum symmetric nor
real in the sense of the metric. For the scaler curvature the general formula is

S = − 1

4ab
�(3 + q + (1 − q)�)@2a

↵
+ (1 − q−1 − (3 + q−1)�)@1b

�
� .
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Finally, it is not obvious what measure we should use to integrate either of these
but if we take measure µ = �ab� = ab (we assume for now the a, b are positive edge
lengths, i.e. the theory has Euclidean signature) and sum over Z2×Z2 then we have

(9) � S = �
Z2×Z2

µS = (a00 − a01)2( 1

a00
+ 1

a01
) + (b00 − b10)2( 1

b00
+ 1

b10
).

independently of q. We consider this action as some kind of energy of the metric
configuration. If we took other measures such as µ = 1 or µ = ��g� = ��ab� then
we would not have invariance under q so the action would not depend only on the
metric but on the choice of ∇.

Next we Fourier transform on Z2 × Z2 to write our results in ‘momentum space’.
We have

1, �(i, j) = (−1)i = (1,1,−1,−1),  (i, j) = (−1)j = (1,−1,1,−1), � = �
@1� = −2�, @2� = 0, @1 = 0, @2 = −2 

as the plane waves and given the conditions we imposed on a, b, we can expand
these in terms of four real momentum space coe�cients as

a = k0 + k1 , b = l0 + l1�.

Then some computation gives the Scalar curvature for q = 1 as

S = 2

(k2
0 − k2

1)(l20 − l21)�(l0 − l1)(k1(k0 + k1) − l1(k0 − k1)), (k0 + k1)(l1(l0 + l1) − k1(l0 − l1)),
(k0 − k1)(k1(l0 + l1) − l1(l0 − l1)), (l0 + l1)(l1(k0 + k1) − k1(k0 − k1))�.

With measure µ = ab as above, this gives

� S = 8� k0k
2
1

k2
0 − k2

1

+ l0l
2
1

l20 − l21
� .

To analyse this we define k = k1�k0 with �k� < 1 corresponding to a > 0 at all points
and similarly for l = l1�l0 and fix k0, l0 > 0 as the average values of a, b so that we
can focus on fluctuations about these as controlled by k, l. In this case the action
becomes

(10) � S = 8� k0k
2

1 − k2
+ l0l

2

1 − l2
� = 8k0(k2 + k4 + k6�) + 8l0(l2 + l4 + l6 +�).

This has a ‘bathtub’ shape with coupling constants k0, l0 and a minimum at k =
l = 0, which makes sense as a measure of the energy of the gravitational field. The
k, l are not momentum variables but the relative amplitude of the unique allowed
non-zero momentum in each direction.

In the Minkowski version, we require say a < 0, b > 0 everywhere. We suppose
k0 < 0, l0 > 0 as the average values and require �k1� < −k0, �l1� < l0 to maintain the
sign. We define k, l as before for the relative fluctuations and regard k̃0 = −k0, l0 as
coupling constants. Now µ = �ab� = −ab for our measure, giving

� S = 8� k̃0k
2

1 − k2
− l0l

2

1 − l2
� = 8k̃0(k2 + k4 + k6�) − 8l0(l2 + l4 + l6 +�).

In either case, if we ignore higher order terms then we have S quadratic in k, l as
for a massless free field in a universe with only one momentum in each direction.
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and Ricci curvature, e.g.

� = (1,�1,�1, 1)

Choice of measure                    =>                  

measures the `energy’ in the gravitational field. `Bathtub’ shape
minimised at a, b constant (`rectangular’ geometry)



G = S3 = ⟨u, v⟩/u2
= v2

= e, uvu = vuv

C = 2 − cycles, Λ1 = {eu, ev, ew} w = uvu
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where the value of the normalised character is ⌅V (C) = ⌅(c) = Tr⇤(c)�dim(V ) for
any c � C. Here �c ⇤(c) = ⇤(�c c) = ⇥ id for some constant ⇥ by Schur’s lemma as�c c is central. Taking traces, since all elements c then give the same value, we
have dim(V )⌅V (C) ⇥C⇥ = ⇥dim(V ). �

If C is a sum of conjugacy classes then the eigenvalue is the sum of such terms,
one for each conjugacy class in C. It remains to illustrate the theory on a few
examples.

s3calcex Example 1.56. (Permutation group) The simplest non-abelian example is the
permutation group G = S3 which we consider as generated by u, v,w with relations
u2 = v2 and relations uvu = vuv = w (and similar relations with w). Here u = (12)
and v = (23) in terms of transpositions. For the calculus we take C = {u, v,w} the
set of 2-cycles and as these are order 2. The Cayley graph is
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and the relations between the left-invariant forms, and their di�erential, are

eu ⌅ ev + ev ⌅ ew + ew ⌅ eu = 0, ev ⌅ eu + eu ⌅ ew + ew ⌅ ev = 0, e2u = e2v = e2w = 0
deu + ev ⌅ ew + ew ⌅ ev = 0, dev + ew ⌅ eu + eu ⌅ ew = 0, dew + eu ⌅ ev + ev ⌅ eu = 0
From these relations (and there are no further relations in higher degree) one can
find that the dimensions of the calculus in di�erent degrees is 1 ⇤ 3 ⇤ 4 ⇤ 3 ⇤ 1 which
means a volume-form dimension of 4, like a 4-manifold, but a cotangent dimension
of 3. Here

Vol ⇤= eu ⌅ ev ⌅ eu ⌅ ew = ev ⌅ eu ⌅ ev ⌅ ew = ⇥ew ⌅ eu ⌅ ev ⌅ eu = ⇥ew ⌅ ev ⌅ eu ⌅ ev
and equal to the 2 cyclic rotations of these equations. So up to normalisation there
is a unique ‘volume form’ and it is invariant under cyclic roations.. Any expression
of the form ea⌅eb⌅ea⌅eb is zero as is any expression with a repetition in the outer
(or inner) two positions. It is easy to see that the basic 2-forms

eu ⌅ ev, ev ⌅ eu, ev ⌅ ew, ew ⌅ ev
mutually commute and that Vol has trivial total G-degree. In degree 3 we have

eu ⌅ ev ⌅ ew = ew ⌅ ev ⌅ eu = ⇥ew ⌅ eu ⌅ ew = ⇥eu ⌅ ew ⌅ eu
and the two cyclic rotations u � v � w � u of these relations, so one can take a
basis given by one of these and its cyclic rotations. Lets define the element

�� = 2(eu ⌅ ev ⌅ ew + ev ⌅ ew ⌅ eu + ew ⌅ eu ⌅ ev)
given by adding these together (the normalisation is relevant later). One can then
prove by extensive linear algebra, which we omit, that the noncommutative de
Rham cohomology is

H0
dR(S3) = C.1, H1

dR(S3) = C.�, H2
dR(S3) = 0, H3

dR(S3) = C.��, H4
dR(S3) = C.Vol.
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given by adding these together (the normalisation is relevant later). One can then
prove by extensive linear algebra, which we omit, that the noncommutative de
Rham cohomology is

H0
dR(S3) = C.1, H1
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dR(S3) = 0, H3

dR(S3) = C.��, H4
dR(S3) = C.Vol.

dim(Λ) = 1 : 3 : 4 : 3 : 1

g =
X

a

ea ⌦ ea => reu = (3 + �)eu ⌦ eu + (1 + µ)✓ ⌦ ✓ � �1(eu ⌦ ✓)

2-param WQLC but no QLC; 1-param Einstein✓ = eu + ev + ew

Note for bicovariant calculus on any Hopf algebra braiding  
=>`antisymmetrization’ => canonical              from (⌦, d) (⌦1, d)

 

... same numbers as number of indecomposables  of preprojective algebra/ 
components of Lusztig-Kashiwara canonical basis for type An... 

G S2 S3 S4 S5

Top deg 1 4 12 40
Remark:               

Nonabelian group example



2.3 quantum geometry of 2x2 matrices  

Prop ⌦1(M2(C)) are inner, parallelizable and up to isom:

unique universal calc⌦1 = M2 �M2 �M2

⌦1 = M2 �M2

⌦1 = M2

CP2

CP2

In any exterior algebra       eg                 =>  

s = 1� 0, t = 0� 1 da = [✓s, a]s+ [✓t, a]t

s, t s2 = t2 = 0 dimM2(⌦) = 1 : 2 : 1

e.g. da = [E12, a]s+ [E21, a]t
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the same ✓ = E12s + E21t as before, and it is nondegenerate with infinite volume
dimension.

Proof. Since I2 is the identity matrix, it follows that [A, s] = [A, t] = 0 for
all A ∈ M2(C) and dA = [E12,A]s + [E21,A]t = [✓,A] in our new, more algebraic,
notation for the first order calculus. In particular,

dE12 = [E21,E12]t = (E22 −E11)t, dE21 = [E12 −E21]s = (E22 −E11)s
dE11 = [E12,E11]s + [E21,E11]t = −E12s +E21t = −dE22.

The first of these tells us that

0 = d2E12 = 2(E12s −E21t)t + (E22 −E11)dt

which (multiplying by E22 −E11) tells us that

dt = 2(E11 −E22)(E12s −E21t)t = 2E21t
2 + 2E12st = 2✓t

One similarly has ds = 2✓s and

0 = d2E11 = −[E21,E12]ts + [E12,E21]st +E21dt −E12ds

= (E11 −E22)ts + (E11 −E22)st + 2E21E12st − 2E12E21ts = −ts + st

so that t, s commute. One can then check from the above formulae that d applied
to the algebra products EijEkl = �jkEil introduces no more relations. Finally,
{✓, s} = ✓s + s(E12s +E21t) = 2✓s = ds given the above results. It follows similarly
from the form of ⌦max that the whole calculus is inner. Non-degeneracy can be
seen by taking the product of a form with either s or t.

⇤
This example illustrates that for significantly many noncommutative algebras

the maximal prolongation is generally too big. However, it provides a useful starting
point from which other calculi extending ⌦1 have to be quotients. In our case
we can set sn = tn = 0 for any n > 1 and still have a ∗-exterior algebra. The
smallest ∗-exterior algebra extending Corollary 1.8 is then to quotient the maximal
prolongation by the additional relations s2 = t2 = 0.

Proposition 1.37. The exterior algebra on M2(C) given by ⌦max in Exam-
ple 1.36 modulo s2 = t2 = 0 has graded dimension 1:2:1 (i.e., the dimensions in each
degree up to the top degree) as for a classical 2-manifold and cohomology

H0
dR(M2(C)) = C.1, H1

dR(M2(C)) = CE21s⊕CE12t, H2
dR(M2(C)) = Cs ∧ t

showing Poincaré duality. It is also nondegenerate.

Proof. We note that from the form of ds = 2✓s etc., it is clear that s2 and t2

generate a di↵erential ideal. We also have d(As +Bt) = ({E21,A} + {E12,B})st as
an anticommutator of matrices. Then explicitly

d(
�
�
�
a b

c d

�
�
�

s +
�
�
�
e f

g h

�
�
�

t) =
�
�
�
b + g e + h

a + d b + g

�
�
�

st.

A complement of the image of d is then (E11 −E22)st giving H2
dR = C. Meanwhile,

ker(d) =
���������

�
�
�
a b

c −a

�
�
�

s +
�
�
�

e f

−b −e

�
�
�

t

���������
, d

�
�
�
a b

c d

�
�
�
=
�
�
�
c d − 1

0 −c

�
�
�

s +
�
�
�
−b 0

a − d b

�
�
�

t,

=>

g = s⌦ s+ t⌦ te.g. => incl. 3-param family QLCs containing     
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associated to the above hermitian metric.
Now we consider the sub-bimodule E = S+ of the spinor bundle from Exam-

ple 8.49 generated by s. We define @S+s = 0 or �−11 = 0 resulting in zero holomorphic
curvature. Using (240) to switch sides of the previous spinor inner product gives

�as, b s� = �J (as),J −1(b s)� = �2 �s̄ a∗, s̄ b∗� = �2 µaw b∗.

We have �s, s̄� = �2 µw, so g11 = �2 µw, so

�+11 = −@(w)w−1 = z̄.dz.w−1.

is the remaining Christo↵el symbol of the Chern connection. �

Exercises for Chapter 8

E8.1 Show that a left connection on the graph calculus as in Chapter 1.4 on the
infinite string �→ −1→ 0→ 1→ 2→ � has the form ∇!i = !i−1⊗!i+�i!i⊗
!i+1 for �i ∈ where !i = !i→i+1, and is always a bimodule connection.
Show that any g ∈ ⌦1 ⊗A ⌦1 (which will necessarily not be a full quantum
metric since it will be noncentral and hence not bimodule invertible) has the
form g = ∑i gi!i ⊗ !i+1 for gi ∈ and that for any such metric there is a
1-parameter moduli of metric compatible connections in the sense ∇g = 0.
So that the same result holds for an open string 0 → 1� → n − 1 with non-
applicable terms in ∇ and g dropped. For a closed string 0 → 1 → � →
n− 1→ 0 (identifying the point n with 0) show that if n is odd then there is
a unique ∇ solving ∇g = 0 for any g and for n even there is a one-parameter
moduli as before but a constraint g0�gn−2 = g1�gn−1 on the metric. [Fourier
transform as in E2.5 can be used to transfer the closed string results here to
cq[S1] while Example 8.5 for Cq[S1] only sees an algebraic part of the line
graph model from that point of view.]

E8.2 Suppose that ⌦1 has a central basis {si} over an algebra A with trivial
centre, so that the coe�cients tensors of ↵(si) = ↵i

mnsm⊗sn and �(si⊗sj) =
�ij

mnsm⊗sn as well as of g = gijs
i⊗sj are all constants (from the bimodule

map or centrality properties, or applying an exercise in Chapter 3 to E = ⌦1.)
Suppose that the calculus is inner with coe�cients ✓i in ✓ = ✓is

i linearly
independent of each other and of 1. Show from Proposition 8.11 that metric
compatibility ∇g = 0 holds if and only if

gan↵a
im + �ac

imgab↵
b
cn = 0, �ac

imgab�
bj

cn = �j
igmn (∗)

for all i, j,m,n (and summation of repeated indices). (i) Using this with
s1 = s, s2 = t, show that the quantum Levi-Civita connection on M2(C)
with its maximal prolongation calculus and metric g = s ⊗ t − t ⊗ s shown
Example 8.13 is unique. (ii) Now add the relations s2 = t2 = 0 for the
reduced ⌦(M2(C)) and show that the 4-parameter � and ↵ = 0 claimed in
Example 8.13 are indeed QLCs for this metric. [The full moduli space of
QLCs for this metric has more components.]

E8.3 Using the same methods and the reduced calculus ⌦(M2(C)) as in the pre-
ceding question, but now with g = s ⊗ s + t ⊗ t, show that (i) there is a
3-parameter moduli of ∗-preserving QLCs with ↵ = 0 and containing the
standard point

∇s = 2E21t⊗ s, ∇t = 2E12s⊗ t, �(si ⊗ sj) = (−1)i−jsj ⊗ si

Rrs = 2�3s ^ t⌦ s, Rrt = �2�3s ^ t⌦ t
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two. First of all, the coproduct gives a left coaction of ⇥ on itself and if {ea} is a
basis of ⇥1 we have

�⌃ = 1�⌃ + ea�⌥a⌃ +⌥
where the remaining terms involve degree 2 or higher in the first factor. This defines
a natural interior product operation ⇥1��⇥m � ⇥m⇥1. Secondly, we can ask for a
right-integral ⇤ . There are some complications since we do not usually want this
to be a morphism to 1 but to some nontrivial 1-dimensional object. Typically the
integral has support in the top degree n only, if there is such a volume form to the
calculus. Then the braided group Fourier transform on ⇥ is a map ⇥m � ⇥�n⇥m
which in the presence of a metric implies a natural Hodge ⌅ operator on the invariant
forms, operations which then extend to ⇤.

su2bicovdims Example 2.72. For the canonical bicovariant calculus on matrix coquasitrian-
gular Hopf algebra as Corollary

Omega1coquasi
2.51, the relations of the exterior algebra are

...(Rmatrix)
In particular, for the 4D bicovariant calculus in Example

4Dbicov
?? we have the rest of

the bicovariant exterior algebra as eb, ec behaving like usual forms or Grassmann
variables and (where ez = q⇥2ea ⇥ ed and *****)

ez ⌃ ec + q2ec ⌃ ez = 0, eb ⌃ ez + q2ez ⌃ eb = 0, ez ⌃ ez = (1 ⇥ q⇥4)ec ⌃ eb.
d⇤ = 0, dec = q2ec ⌃ ez, deb = q2ez ⌃ eb, dez = (q⇥2 + 1)eb ⌃ ec.

*** check ⇤ normalisation *** For generic q the dimensions and cohomology in each
degree are

dim(⇤i) = 1 ⇧ 4 ⇧ 6 ⇧ 4 ⇧ 1, H0
dR = C, H1

dR = C, H2
dR = 0, H3

dR = C, H4
dR = C

with H1 spanned by ⇤. �
In Example

su2bi
4.35 we shall calculate the cohomology of the 4D bicovariant cal-

culus, and in particular justify why we only need to do carry out the calculation
for the left invariant forms.

2.7. Tangent Lie algebra of a quantum group
tanliealg

In general in noncommutative geometry we favour 1-forms as the primary ob-
ject. However, on a DGA over an algebra A we could still consider the space XR

of right vector fields as the space of right A-module maps ⇤1 � A. The space XR

is an A-bimodule by (a⌅)(⌃) = a⌅(⌃) and (⌅a)(⌃) = ⌅(a⌃), and we have a canon-
ical evaluation map XR�A⇤1 � A making this a categorical right-dual evaluation.
There is a natural notion of ‘antisymmetrized vectors’ ⇥2XR ⇥ XR�XR compatible
with the structure of ⇤2, consisting of �⌅�⇧ such that

⇥⌅(⇧(⌃)⇥) = 0, ⇤⇥⌃�
A
⇥ � ker⌃

There is then a natural ‘Lie bracket’

rightLiebracketrightLiebracket (27) ⇥[[⌅,⇧]]R(⌃) =⇥⌅(iR�(d⌃) + d⇧(⌃)), ⇤⇥⌅�⇧ � ⇥2XR, ⌃ � ⇤1

where iR�(�) = (⇧�A id)�̃ and �̃ � ⇤1�A⇤1 is any element that maps to � � ⇤2

under ⌃.
If we want a bracket between any two vector fields then we would need to

map them to the space ⇥2XR, which classically would be by antisymmetrization.

Λ
1

= {eb, ec, ez, θ} {eb, ec} = 0 e
2

b = e
2

c = θ
2

= 0

Vol = eb ∧ ec ∧ ez ∧ θ

g = q2ec ⊗ eb + ec ⊗ eb +
q2

(2)q

(ez ⊗ ez − θ⊗ θ)
unique invariant 
`Killing’ metric

C < a, b, c, d > /ba = qab, dc = qcd, cb� bc, db = qbd, ca = qac, ad� q�1bc = 1 = da� qbc

⌦1 = Cq[SL2].⇤
1

(Woronowicz ’89)

dim(⌦) = 1 : 4 : 6 : 4 : 1
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relations in Example 2.57 and can be reconstructed from these and the formula
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g = ec ⊗ eb + q2eb ⊗ ec +
q3

(2)q
(ez ⊗ ez − ✓ ⊗ ✓)

for this calculus found in Proposition 2.58. What is important is that it is invariant
under �R and the crossed module action. Then we can apply Corollary 5.84.

Proposition 5.87. For Cq[SL2] with generic q and the 4-dimensional calculus
with its invariant central metric, there is a unique torsion-free and cotorsion-free
connection given by

↵a = −↵d =
q

(4)q
ez, ↵b =

1

(2)q2

eb, ↵c =
1

(2)q2

ec

∇ea = −∇ed =
1

(2)q2

�eb ⊗ ec − ec ⊗ eb − �
q3

(2)q
ez ⊗ ez�

∇eb = 1

(2)q2

�ez ⊗ eb − q2eb ⊗ ez�

∇ec = 1

(2)q2

�−q2ez ⊗ ec + ec ⊗ ez�

and curvature

R∇ea = −R∇(ed) = −
q2

(2)2q2

(ec ∧ ez ⊗ eb + q−2eb ∧ ez ⊗ ec + �eb ∧ ec ⊗ ez)

R∇eb = q2

(2)2q2

(eb ∧ ez ⊗ ez + q−3(2)qeb ∧ ec ⊗ eb)

R∇ec = q2

(2)2q2

(ec ∧ ez ⊗ ez − q−1(2)qeb ∧ ec ⊗ ec).

The connection is not in general regular nor a bimodule connection.

Proof. We define the components of the connection by ↵i = ↵j
iej and have
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↵ =

�
���������
�

x q2�y −q−2�z −q−2w

z q4
+x(1−q8

)

1+q4 0 q−6z

y 0 1+x(q6
−q−2)

1+q4 (q4 − 1 + q−2)y

−q2x −q4�y �z w

�
���������
�

; w = 1 + q6

[4]q2

−x(q4−q2+q−2)

where x, y, z are arbitrary elements of Cq[SL2]. If we assume for the moment that
↵j

i are numbers (i.e. commute with the 1-forms) then the cotorsion equation is

=
q

(2)q
rez

r✓ = 0

=> q-Laplacian        eigenvalues

 WQLC  w/

(j)q(j + 1)q

�

(n)q =
qn � q�n

q � q�1

� = 1� q�2



Suppose (1) B has a left integral
              (2) B has a left dual  
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B → 1

ev = ∪ : B∗ ⊗B → 1, coev = ∩ = exp : 1 → B ⊗B∗

⇒ F : B → B∗, F ◦ Reg = ·(F ⊗ id)braided Fourier transform

A. Kempf and S. Majid: Algebraic q-integration and Fourier theory 

FIG. 2. (a) Proof of associativity of the convolution product (in box) for a braided-Hopf algebra equipped with a left 
integral. (b) Lemma needed in proof. 

grammatic language, the complex numbers and other bosonic objects need no strings attached. 
The rules of braided algebra are that sliding nodes under strings, etc. (without cutting any strings) 
do not change the results of going from the top to the bottom. 

We suppose that B has a left dual Hopf algebra B * in the sense that there is an evaluation 
pairing ( , )= U 23 *@B -+ C obeying certain properties. Namely, there should also be a coevalu- 
ation coev= n:C 4 B @JB * such that we have the “double-bend axioms” N = 1 as the identity map 
B + B and UI =I as the identity map B* + B*. The product in B should be related to the 
coproduct in B* and vice versa in the manner recalled in Fig. l(b). These elementary concepts 
from braided group theory are all that we will need. An introduction to these concepts and 
methods is in Ref. 8. 

Our first observation is an elementary one: applying the bend-straightening axioms to the 
pairing of B and B* in Fig. l(b), we obtain that exp=coev obeys 

(A@id)exp=expzs exp13, (id@A)exp=expr3 expr2, 

( l @ id)oexp= 7, 
023) 

(id@ l )Oexp= T,Z, 

which we have written in diagrammatic form in Fig. l(c). If we think of the coproduct as “addi- 
tion” in B or B* (which will be exactly its role in our examples) we see that the coevaluation 
always obeys the characteristic property of an exponential. If {e,} is any basis of B and {f”} a dual 
basis then exp=Z e,@p is the corresponding braided exponential. In the infinite-dimensional 
case it means of course that exp is a formal power series, but one can still proceed by working 
order by order in a deformation parameter, etc., in the manner well known for the universal R 
matrix of a quantum group. 

The role of the pairing ( , ) itself is to provide an action of B* on B by evaluation against the 
coproduct (the coregular representation) as already explained in Ref. 8. This action plays the role 
of differentiation in our abstract picture. Thus the notion of duality of braided-Hopf algebras has 
two pieces, evaluation and coevaluation. When we think of A as “coaddition,” these become 
differentiation and exponentiation, respectively. We will of course demonstrate all this concretely 
in our examples in Sets. VI B and VI C. 

Next, we assume that we have a left integral s:B -+ 4: on B. This is required to obey (id@JpA 
= es, which is just the usual definition of translation invariance under the coproduct. We also 
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⇒

(id⊗
∫

)∆ = η⊗
∫

F

S
exp

exp
exp

exp

exp

B    B*

B

B*

∆

==
=

B*

.

B

B

.
.

⇤

3. Braided-Hopf Algebra Fourier Transform
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Figure 2. Diagrammatic computations of F?F and FF? in Proposition 3.2

Moreover, if
R ⇤

is a right integral on B?
then

F?F = µS, µ := (

Z
⌦

Z ⇤
) exp

If the integrals are both unimodular and morphisms then FF? = µS and [F , S] = 0
when µ is invertible (see Figure 2 for the general case).

Proof. Here FReg and F?F are already covered in [11, Figs 3-5] so we do not repeat
all the details here. We recall only the diagram proof for F⇤F using the lemma in
[11, Fig. 2(b)] at the first equality in Figure 2 and note that we did not need to
assume that

R
,
R ⇤

are morphisms to 1 as in [11] as long as we keep the integrals to
the left. The second line now uses the same lemma but this time on B? to compute
FF⇤ as shown provided

R ⇤
is also a left integral so that the lemma applies and

R

is also a right integral. If
R

,
R ⇤

are morphisms to 1 so we can take them through
braid crossings to obtain µS and then µFS = FF?F = µSF . The general result
a (F ⌦ id) = F � · follows more simply from the duality pairing and associativity
of the product of B. ⇤

The map F? here is a right-integral version of the theory which is being used to
define the adjoint Fourier transform and converted to a left version via  . The
braided antipode S plays the role of the minus sign familiar in classical Fourier
theory and µ plays the role of 2⇡. If µ and S are invertible then the stated results
imply that F is invertible at least in the k-linear setting (with F�1 = S�1F? in the
unimodular trivial morphism case). Also, if we compose F with S then the first
property above becomes

(3.1) SF� `= ·(id ⌦ SF).

Example 3.3. For the elementary example of B = k[x]/(xn+1) we have Vol = xn

as discussed, B? = k[y]/(yn+1) where |y| = �1 and Vol⇤ = yn for the top form
and exp =

Pn
m=0 xm ⌦ ym/[m; q]! as mentioned at the end of Section 2.2. Here

[m; q] = (1 � qm)/(1 � q) and q is a primitive n + 1-th root of 1. We have

F(xm) =
yn�m

[n � m; q]!
, F?(ym) =

q(n�m)2xn�m

[n � m; q]!
, µ = [n; q]!�1
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B?B

SReg =
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B

a=

B? BB?

`=

B

Figure 1. Diagrammatic definitions of relevant actions, Fourier
transform F and adjoint Fourier transform F⇤ on a braided-Hopf
algebra B with right dual B?.

the above. Reg makes B a right B? module algebra in the braided category. The
principal ingredient of Reg here is actually a left action ` making B a left B?-
module algebra in the braided category. Similarly, we have a straightforward right
action a under which B? is a right B-module algebra [18].

We also need the notion of a left integral and the simplest thing is to require a
morphism

R
: B ! 1 in the sense (id ⌦

R
)� = ⌘ ⌦

R
. However, we do not

want to be too strict about this. For example, for the finite anyonic braided line
B = k[x]/(xn+1) in the braided category of Z/nZ-graded spaces with braiding given
by an n + 1-th root of 1 and |x| = 1, the obvious

R
xm = �m,n is not a morphism

to 1. Our approach is to live with this and not necessarily assume any morphism
properties; we can still use the diagrammatic notation but be careful not to pull
the map through any braid crossings. A more formal approach is to view it as a
morphism B ! K where K = k taken with degree n in the case of the anyonic
braided line. The uniqueness of the integral when it exists is similar to the Hopf
algebra case (see [2] for a formal proof).

For Fourier transform we need not only that B? is dually paired but that B is actu-
ally rigid with dual object B⇤. Again, this is a very strong assumption, analogous
to finite-dimensionality of B and amounting to this in the typical k-linear case. It
means that there is a coevaluation map exp = coev : 1 ! B ⌦ B⇤, denoted by
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R ?
: B? ! 1. We can live with this or suppose formally thatR ?
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R
a left integral as above. Then F : B ! B? defined in Figure 1 is
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Proposition 3.2. In the setting of the definitions above

F � Reg = · � (F ⌦ id), a (F ⌦ id) = F � ·

ev(ym ⌦ xp) = �m,p[m; q]!

F(xm) =

Z
xm exp(x⌦ y) =
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Figure 2. Diagrammatic computations of F?F and FF? in Proposition 3.2

Moreover, if
R ⇤

is a right integral on B?
then

F?F = µS, µ := (

Z
⌦

Z ⇤
) exp

If the integrals are both unimodular and morphisms then FF? = µS and [F , S] = 0
when µ is invertible (see Figure 2 for the general case).

Proof. Here FReg and F?F are already covered in [11, Figs 3-5] so we do not repeat
all the details here. We recall only the diagram proof for F⇤F using the lemma in
[11, Fig. 2(b)] at the first equality in Figure 2 and note that we did not need to
assume that

R
,
R ⇤

are morphisms to 1 as in [11] as long as we keep the integrals to
the left. The second line now uses the same lemma but this time on B? to compute
FF⇤ as shown provided

R ⇤
is also a left integral so that the lemma applies and

R

is also a right integral. If
R

,
R ⇤

are morphisms to 1 so we can take them through
braid crossings to obtain µS and then µFS = FF?F = µSF . The general result
a (F ⌦ id) = F � · follows more simply from the duality pairing and associativity
of the product of B. ⇤

The map F? here is a right-integral version of the theory which is being used to
define the adjoint Fourier transform and converted to a left version via  . The
braided antipode S plays the role of the minus sign familiar in classical Fourier
theory and µ plays the role of 2⇡. If µ and S are invertible then the stated results
imply that F is invertible at least in the k-linear setting (with F�1 = S�1F? in the
unimodular trivial morphism case). Also, if we compose F with S then the first
property above becomes

(3.1) SF� `= ·(id ⌦ SF).

Example 3.3. For the elementary example of B = k[x]/(xn+1) we have Vol = xn

as discussed, B? = k[y]/(yn+1) where |y| = �1 and Vol⇤ = yn for the top form
and exp =

Pn
m=0 xm ⌦ ym/[m; q]! as mentioned at the end of Section 2.2. Here

[m; q] = (1 � qm)/(1 � q) and q is a primitive n + 1-th root of 1. We have

F(xm) =
yn�m

[n � m; q]!
, F?(ym) =

q(n�m)2xn�m

[n � m; q]!
, µ = [n; q]!�1
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as well as Sxm = (�x)mq
m(m�1)

2 and ditto with x replaced by y. One can see that

F?F = µS using q
n(n+1)

2 = (�1)n. Due to the nontrivial braidings of the integrals,
however, the right hand side in Figure 2 gives

FF? = q2D+1µS

where D is the monomial degree operator. The same method as in the proof above
now gives us FS = q2D+1SF or equivalently SF = FSq2D+1, which one may verify
from the stated F , S.

We now give an example of a super-braided-exterior algebra more in keeping with
our present motivations. This is the usual ‘fermionic quantum plane’ but regarded
as a super-braided-Hopf algebra[17, Example 10.2.5].

Example 3.4. The fermionic quantum plane B = A0|2
q is of the form B = B�(⇤1)

in the category of kq[GL2]-comodules, where kq[GL2] is equipped with a certain
coquasitriangular structure (this does not descend to kq[SL2] due to a non-standard
normalisation of the coquasitriangular structure on the generators) and q is generic.
Here

 (ei ⌦ei) = ei ⌦ei,  (e1 ⌦e2) = q�1e2 ⌦e1,  (e2 ⌦e1) = q�1e1 ⌦e2 +�e2 ⌦e1

where � = 1 � q�2. Recall that B has primitive generators and one finds the
relations e2e1 + q�1e1e2 = 0 and e2i = 0 for i = 1, 2 and developed as a super-
braided Hopf algebra i.e. with super-braiding  sup having additional ± factors
according to the monomial degrees. This implies S(e1e2) = q�2e1e2 as well as
S(1) = 1, S(ei) = �ei. On the dual side we have B? = B�(⇤1⇤) with a dual basis
of generators f1, f2, underlying braiding

 (f i⌦f i) = f i⌦f i,  (f1⌦f2) = q�1f2⌦f1+�f1⌦f2,  (f2⌦f1 = q�1f1⌦f2,

relations f2f1 = �qf1f2 and S(f1f2) = q�2f1f2. There is up to scale a unique top
degree in each case, namely Vol = e1e2 and Vol⇤ = f1f2 and we find hVol⇤, Voli =
ev(f1 ⌦ f2, [2, � ](e1 ⌦ e2)i = �q�1, so that

exp = 1 ⌦ 1 +
2X

i=1

ei ⌦ f i � qVol ⌦ Vol⇤

We define integrals via
R

Vol = 1 and
R ⇤

Vol⇤ = 1 but note that these are not
morphisms. Rather we use braidings

 (f1⌦e1) = e1⌦f1+(1�q2)e2⌦f2,  (f2⌦e2) = e2⌦f2,  (f i⌦ej) = qej ⌦f i

for i 6= j (these are obtained from the 2nd inverse R̃ as in [17, Propn. 10.3.6] for R
normalised to our case) to find  (f i ⌦Vol) = qVol⌦ f i and hence  (Vol⇤ ⌦Vol) =
q2Vol⌦Vol⇤. We similarly have  (f i⌦Vol⇤) = qVol⇤⌦f i. From these it is clear thatR

and
R ⇤

are not morphisms in the underlying comodule category. Again, there
can be further signs according to the super degrees for the actual super-braiding
 sup when we read diagrams in the super-braided case. In particular, we find

 �1
sup exp = 1 ⌦ 1 � f1 ⌦ e1 � q2f2 ⌦ e2 � q�1Vol⇤ ⌦ Vol

needed in the computation of F?. We now read o↵ from the diagrammatic defini-
tions in Figure 1,

F

8
>>><

>>>:

1

e1
e2
Vol

=

8
>>><

>>>:

�qVol⇤

f2

�q�1f1

1

, F?

8
>>><

>>>:

1

f1

f2

Vol⇤

=

8
>>><

>>>:

�q�1Vol

�q2e2
qe1
1

, µ = �q.
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>>>:
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, µ = �q.

 (xm ⌦ xp) = qmpxp ⌦ xm

Suppose B* also has an integral, define       then  (new)F⇤

qn+1 = 1 C = Z/(n+ 1)

�x = x⌦ 1 + 1⌦ x

D = monomial deg



# = (id⊗ g ◦ F) : Ωn → Ωtop−n
if       ,     central and binvariant    =>           Vol g

Lemma                                            ,             ,                                                                                                

g quantum symmetric =>
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as a morphism B ! K with some possibly non-trivial generator. We also have an
identification B? = B�(⇤1⇤) by extending the duality pairing ⇤1⇤⌦⇤1 as a braided-
Hopf algebra pairing, given that this is now non-degenerate after quotienting by the
relations of B� as explained in Section 2.2. Hence we obtain a unimodular integral
on this too. In the nicest case, the top forms Vol, Vol⇤ of degree n (say) span the
trivial object 1 so that

R
,
R ⇤

are morphisms to 1 but of parity n mod 2, so we are
in the setting of Corollary 3.5.

Next, in non-commutative geometry a metric is g 2 ⌦1 ⌦A ⌦1 with an inverse
( , ) : ⌦1 ⌦A ⌦1 ! A. One can show that in this case g must be central. Normally,
one also requires the metric to be ‘quantum symmetric’ in the sense of the product
^(g) = 0 in ⌦2. We are interested in left-invariant metrics where g 2 ⇤1 ⌦ ⇤1.

Lemma 3.6. A bi-invariant metric on a Hopf algebra A with bicovariant calculus is

equivalent to an A-crossed module isomorphism g : ⇤1⇤⇠=⇤1
. The metric is quantum

symmetric if and only if  (g) = g.

Proof. The metric being bi-invariant means that it is an element g 2 ⇤1 ⌦ ⇤1

which is invariant under the coaction �R on the tensor product. The existence of a
bimodule map ( , ) requires g to be central which in turn requires that g is invariant
under the crossed module right action / (since this determines the cross product of
A·.<⇤). So a metric is equivalent to a morphism 1 ! ⇤1 ⌦⇤1 in the crossed module
category. Evaluation from the left makes this equivalent a morphism as stated,
which we also denote g. Here ⇤⇤ is again a right crossed module in the usual way
(via the antipode). Clearly ^(g) = 0 if and only if g 2 ker[2, � ] = ker(id �  )
according to the relations of B�(⇤1). ⇤

Given a bi-invariant metric we therefore have B±(⇤1⇤)⇠=B±(⇤1) hence combined
with the above remarks in the finite-dimensional case, an isomorphism which we also
denote g : B±(⇤1)⇤ ! B±(⇤1). We are now ready to define the Hodge operator,
using the B� version. We do it in the nicest case but the same ideas can be used
more generally as we have seen in Section 3.1.

Definition 3.7. Suppose that ⇤1 is finite-dimensional in the category of right
A-crossed modules, g a bi-invariant metric and B�(⇤1) finite-dimensional with a
1-dimensional top degree n and central bi-invariant top form Vol used to define

R
.

We define the Hodge star

] = g � F : B�(⇤1)m ! B�(⇤1)n�m

which we extend as a bimdodule map to ⌦m ! ⌦n�m.

By construction our ] is a morphism in the crossed-module category. In geometric
terms this means that it extends as a bimodule map and is bicovariant under the
quantum group action on ⌦. We also define ]? = (�1)D � F? � g�1 where D is the
degree operator.

Proposition 3.8. In the setting of Definition 3.7, µ = hVol, Voli�1 2 k⇥
, ] is

invertible and ]S = (�1)nS]. If the metric g is quantum symmetric then S =
(�1)D

, ]? = ] and ]2 = µ on degrees D = 0, 1, n � 1, n.

Proof. Here hVol, Voli is non-zero since otherwise Vol would be zero in B�(⇤1), and
its inverse supplies the coe�cient of the top component of exp, which is µ. Since
µ 6= 0 we can apply Corollary 3.5 to see in particular that ], S graded-commute.
That S|0,1,n�1,n = (�1)D i.e. on the outer degrees is clear on degrees 0,1 and then
holds on degrees n, n � 1 due to ], S graded-commuting. Next, in terms of ]? with

9]�1 ]S = (�1)topS]

S = (�1)D, ]⇤ = ], ]2 = µ, on D = 0, 1, top� 1, top
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the metric identification, the result in Corollary 3.5 becomes ]?] = µ(�1)DS and
](�1)D]? = µ(�1)nS since the parity of the integral is n mod 2. Taking the (�1)D

to the left in the latter equation makes it (�1)n�D so that

]? = µ(�1)DS]�1

on all degrees, giving ]?|0,1,n�1,n = µ]�1 on the outer degrees. On the other hand,
we have

exp = 1 ⌦ 1 + g + · · · + g(n�1) + µVol ⌦ Vol

(for some element g(n�1) 2 ⇤n�1 ⌦ ⇤n�1), while the definition of ]? is such that it
is given by integration agains  �1 exp without any signs. Since g (by the quantum
symmetry assumption) and 1 ⌦ 1 are invariant under  , these terms are the same,
and hence ]? = ] on degrees n � 1, n and hence ]2 = µ on these degrees. In that
case ]?(]!) = µ! = ]2! on all ! of degree n � 1, n tells us that ]? = ] on degrees
0,1 also, and hence that ]2 = µ on these degrees also. This means that

 �1
sup exp = 1 ⌦ 1 � g + · · · + (�1)n�1g(n�1) + (�1)nµVol ⌦ Vol

for the computation of F? and similarly without the signs for ]?. ⇤

We similarly define left and right interior products

`: ⇤1 ⌦ B�(⇤1)m ! B�(⇤1)m�1, a: B�(⇤1)m ⌦ ⇤1 ! B�(⇤1)m�1

by restricting the left and right actions in Section 3.1 (these are the left and right
braided-partial derivatives in the sense of [24, 18]). We then extend these to bico-
variant bimodule maps

`: ⌦1 ⌦A ⌦
m ! ⌦m�1, a: ⌦m ⌦A ⌦

1 ! ⌦m�1

given by

(a⌘) ` (b!) = (a⌘, b!(1))!(2), (b!) a (a⌘) = b!(1)(!(2), a⌘), 8a, b 2 A, ⌘ 2 ⇤1, ! 2 ⇤

where we underline the braided-coproduct of ⇤. In other words, we extend the
braided coproduct as a bimodule map ⌦ ! ⌦ ⌦A ⌦ (not to be confused with the
super-coproduct of ⌦ as a super-Hopf algebra) and then use the quantum metric
pairing to evaluate, taken as zero when degrees do not match.

We can now interpret our Fourier theory in Section 3.1 as

(3.3) S](⌘ ` !) = ⌘(S]!), ](!⌘) = (]!) a ⌘, 8⌘ 2 ⌦1, ! 2 ⌦

where S is the super-braided antipode of B�(⇤1) extended as a bimodule map to
⌦. It should not be confused with the super-coproduct of ⌦. We also define a left
Lie derivative by

L⌘(!) := ⌘ ` d! + d(⌘ ` !), 8⌘ 2 ⌦1, ! 2 ⌦

and associated codi↵erential and Hodge Laplacian

(3.4) � := (S])�1d(S]), ⇤ := d� + �d.

The use of (S])�1 here is adapted to the left handed ` and left-handed partial
derivatives defined by df =

P
a(@af)ea for any choice of basis {ea} of ⇤1. One

could equally well use ] but this would be adapted to a and right-handed partial
derivatives. We also define the Leibnizator

L�(!, ⌘) = �(!⌘) � (�!)⌘ � (�1)|!|!�⌘

as in [32].
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Corollary 3.9. The codi↵erential and Hodge Laplacian in (3.4) obey

�(f!) = f�! + (df) ` !, ⇤(f!) = (⇤f)! + f⇤! + L�(df, !) + Ldf!

for all f 2 A and ! 2 ⌦. Moreover,

�↵ = ↵a�ea + gab@
a↵b, ⇤f = (@af)�ea + gab@

a@bf

⇤↵ = ↵a⇤ea+(⇤↵a)ea+@a↵b(L�(ea, eb)+Leaeb)+@a@b↵c ((ea ` (ebec)) + gbcea � gabec)

where ↵ = ↵aea in a basis and gab = (ea, eb) (summation understood). If �↵ = 0
then

⇤↵ = ↵a�dea + @a↵b(�(eaeb) + ea ` deb) + @a@b↵c(ea ` (ebec))

Proof. The formula for �(f!) follows immediately from the derivation property of d
and the first interior product property in (3.3). The formula for ⇤(f!) then follows
from this and the Leibniz rule for d as in [32]. These results then give the explicit
formulae for ↵ = ↵aea. ⇤

Note concerning ⇤↵ that (ea ` (ebec)) + gbcea � gabec = (eaeb) a ec in the classical
case, which is antisymmetric in a, b, while L�(df, !)+Ldf! = 2rdf! in the classical
case as shown in [32]. Here r is the classical Levi-Civita connection referred back to
a derivative along 1-forms via the metric. The special case shown in Corollary 3.9
is relevant to ‘Maxwell theory’ where F = d↵ and Maxwell’s equation �F = J has
a degree of freedom to change ↵ by an exact form, which freedom can be reduced
by fixing �↵ = 0. Maxwell’s equation then becomes ⇤↵ = J where J is required to
be a coexact ‘source’.

3.3. Finite group case. To give a concrete example we recall that any ad-stable
subset of a finite group not containing the group identity defines an ad-stable ideal
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P
a ea ⌦ ea�1 provided

our subset is closed under inversion. Here the left coaction is trivial on ⇤1 and
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P
g2G egag�1 ⌦ �g.

The element ✓ =
P

a ea is similarly bi-invariant and makes the calculus inner (so
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Z

G
(J, ✓) = 0

by elementary arguments using (3.3), where
R

G means a sum over the group. HereR
: ⌦n ! k is defined as the tensor product of

R
G and

R
on B�(⇤1) and

R
d� = 0

df = (@af)ea, ↵ = ↵aea, g = gabea ⌦ eb

=>
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Ω(H) is a super Hopf algebra  (Brzezinski), 

Ω∼=H◃<Λ Λ a super braided Hopf algebra in C =

x

M
H

H = YD
H

H

with primitive generators 

Apply to quantum geometry of a Hopf algebra H



=> canonical Hodge operator:

exp =
topX

m=0

X

I,J

ei1 · · · eim(mB)�1
IJ ⌦ ej1 · · · ejm
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that ebecez✓ is invariant and hence so is Vol being a multiple of this. For centrality,
we check for example

aeaebeced = q�1eaaebeced = eaebecq
�1aed = eaebeceda

discarding unwanted terms using the wedge product relations. ⇤

We now use g to identify ⇤1⇤⇠=⇤1 and compute ] using
R

Vol = 1.

Proposition 4.10. For kq[SL2] with its 4D calculus, µ = q6
, ]1 = q6Vol,

]ea = �q4eaebec, ]eb = �q4eaebed, ]ec = q6eaeced, ]ed = q4ebeced+�q4eaebec

](eaeb) = �q2eaeb, ](eaec) = q4eaec, ](eaed) = q2ebec + �q4eaed

](ebec) = q4eaed, ](ebed) = q4ebed + (1 � q4)eaeb, ](eced) = �q2eced

](eaebec) = �q2ea, ](eaebed) = �q2eb ](eaeced) = ec ](ebeced) = q2ed + �q2ea

and ]Vol = 1, where � = 1 � q�2
as above. Acting on degree D, this obeys

]2 = q6, (D 6= 2); (] � q4)(] + q2) = 0, (D = 2).

Proof. We first explicitly compute the exp element in the form

exp = 1⌦1+g+ei1ei2(2B)�1
IJ ⌦ej1ej2+ei1ei2ei3(3B)�1

IJ ⌦ej1ej2ej3+e1e2e3e4(4B)�1⌦e1e2e3e4

where ei, 1  i  4 refer in order to ea, eb, ec, ed and I = (i1, j2, · · · , im) with
i1 < i2 · · · < im labels of a basis of ⇤m and

mBIJ = hei1 · · · eim , ej1 · · · ejmi = ev(ei1 ⌦ ei2 · · · ⌦ eim , [m, � ̃]!(ej1 ⌦ ej2 · · · ejm))

= gi1p1 · · · gimpm [m, � ̃]!pm···p2p1
j1j2···jm

In the last line refer operators to matrices, for example [2, � ̃](em ⌦ en) = ep ⌦
eq[2, � ̃]pq

mn and we remember the metric identification where gij = (ei, ej). This
is the general picture but with bases labelled in the classical way in the present
example for generic q. We obtain

1B
�1 =

0

BB@

��q2 0 0 �q2

0 0 q2 0
0 1 0 0

�q2 0 0 0

1

CCA , 2B
�1 = q2

0

BBBBBB@

0 �q2 0 0 0 �q2

� 0 0 0 �1 0
0 0 q2 0 0 0
0 0 0 1 0 0
0 �q2 0 0 0 0

�1 0 0 0 0 0

1

CCCCCCA

3B
�1 = q4

0

BB@

�� 0 0 �1
0 0 q2 0
0 1 0 0

�1 0 0 0

1

CCA , 4B
�1 = q6

in the basis enumerations 12, 13, 14, 23, 24, 34 and 123, 124, 134, 234 respectively for
the middle cases here. In particular, we see that µ = q6. The matrix 1B�1 here
is the inverse of the matrix gij in our basis and necessarily gives the coe�cients of
the metric g 2 ⇤1 ⌦⇤1, and we note also that µ = 1/ det(g) in this basis. We then
carefully integrate against this exp, for example

](ebed) =

Z
ebedeaec ⌦ (�q2eaeb � q2ebed) +

Z
ebedeced ⌦ (�q2eaeb)

where we read from the 2nd row of 2B�1 for the terms in exp of the form eaec ⌦ · · ·
and from the last row for terms of the form eced ⌦ · · · . The other possibilities in our
basis for the first tensor factor of exp have zero integral. We then evaluate the first
displayed integral as �q2 and the second integral as � on using the relations of the
exterior algebra, to give q4ebed+(1�q4)eaeb as stated. Integrating against g is easier
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=> on 
� = 1� q�2

=> 

⌦D(Cq[SL2])

up to normalisation obeys the q-Hecke relation and ⇤|A = �q



3. Poisson-Riemannian Geometry 

a.b − b.a = λ{a, b} + O(λ2) ω
ij Poisson tensor

C
∞(M)A0 =

Similarly, quantization of              at order    implies new physical field:   Ω1(M)

{ , } ↔

quantisation at order    means a Poisson bracketλ

λ

a.db − (db).a = λ∇âdb + O(λ2)

λ
2
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Meanwhile, however, there has been much progress in noncommutative di⇥erential
geometry – doing di⇥erential geometry on a noncommutative algebra – and for
this one needs at some point not only an algebra A� (specifying the algebra is like
specifying a topological space) but a ‘di⇥erential graded algebra’ (DGA)

�(A�) = ⌃n�
n, d ⇤ �n � �n+1

obeying d2 = 0 and the graded-Leibniz rule. This plays the role of the algebra of
di⇥erential forms (and is like specifying a di⇥erential structure on a space). In the
constructive ‘quantum groups’ approach this is indeed the next later of geometry
in the role classically of choosing the di⇥erentiable structure on a topological space,
typically using quantum symmetry to narrow down and help select the di⇥erential
structure. This contrasts to other approaches such as that of Connes[6] where the
starting point for the di⇥erential geometry is a hilbert space and operator in the
role of Dirac operator on spinor. The data for the di⇥erential structure at the
semiclassical level was properly analysed in [1] by looking at

a ⇧� db � (db) ⇧� a = �⇥âdb +O(�2).
The assumption of an associative �(A�) and the Leibniz rule for d requires at order
� that ⇥â(bdc) = {a, b}dc + b⇥âdc

(1.1) d{a, b} = ⇥âdb �⇥b̂da

(these follow easily from [a, bdc] = [a, b]dc + b[a,dc] and d[a, b] = [da, b] + [a,db]).
The first requirement says that ⇥ is a covariant derivative along Hamiltonian vector
fields â and the second is a Poisson-compatibility. For simplicity we will speak of a
connection ⇥i in our coordinate basis but if the Poisson tensor in these coordinates
is ⇥ij then we are only really making use of the combination ⇥is⇥s in all that
follows, which is to say a partial connection in the case where ⇥ is degenerate. At
order �2 the associativity of �(A�) requires

(⇥â⇥b̂ �⇥b̂⇥â �⇥ ˆ{a,b})dc = 0
(just consider [a, [b,dc]] + [b, [dc, a]] + [dc, [a, b]] = 0) which is to say that our
(partial) connection has to be flat if we are concerned about this order.

This brings us to the following two quantisation problems given a manifold M
equipped with data (⇥,⇥) as above:

Problem 1: can we quantise the data to an associative DGA
�(A�) such that the above hold?

Problem 2: can we similarly quantise other classical geometrical
structures?

Recently in [5] we have answered both questions in the a⇧rmative, but only at
order �. Working only to this order is a process that we call ‘semiquantisation’
but one could as well call it ‘semiclassicalisation’ depending on one’s point of view.
Formally, instead of working over the ring C[[�]] we work over the ring C[�]⇥(�2)
where we formally set �2 = 0. Both rings are mathematical tricks: in physical
applications one wants � to be an actual (imaginary) number meaning on the one
hand for powerseries to converge and on the other hand, in our case, for O(�2)
terms to be physically neglectable. This should be reasonable when � is the Planck

At order      the bimodule associativity is   
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 non-flat connection => nonassociativity at            not at order  O(λ2)

â = {a, }

a Poisson pre-connection along Hamiltonian vec. fields⇒
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fields â and the second is a Poisson-compatibility. For simplicity we will speak of a
connection ⇥i in our coordinate basis but if the Poisson tensor in these coordinates
is ⇥ij then we are only really making use of the combination ⇥is⇥s in all that
follows, which is to say a partial connection in the case where ⇥ is degenerate. At
order �2 the associativity of �(A�) requires

(⇥â⇥b̂ �⇥b̂⇥â �⇥ ˆ{a,b})dc = 0
(just consider [a, [b,dc]] + [b, [dc, a]] + [dc, [a, b]] = 0) which is to say that our
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This brings us to the following two quantisation problems given a manifold M
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Problem 1: can we quantise the data to an associative DGA
�(A�) such that the above hold?

Problem 2: can we similarly quantise other classical geometrical
structures?

Recently in [5] we have answered both questions in the a⇧rmative, but only at
order �. Working only to this order is a process that we call ‘semiquantisation’
but one could as well call it ‘semiclassicalisation’ depending on one’s point of view.
Formally, instead of working over the ring C[[�]] we work over the ring C[�]⇥(�2)
where we formally set �2 = 0. Both rings are mathematical tricks: in physical
applications one wants � to be an actual (imaginary) number meaning on the one
hand for powerseries to converge and on the other hand, in our case, for O(�2)
terms to be physically neglectable. This should be reasonable when � is the Planck

∇

�
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Equiv to Lie Rinehart connection [Huebschmann ’90]
also called `contravariant connection’ [Hawkins] râ = rda



gijω
is(T j

nm;s − 2Rj
nms)dxm

∧ dxnR =
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for all � ⇥ ⇥1(M) and ⇤ ⇥ E.

2.2. Quantizing the metric and Levi-Civita connection. We can similarly
apply our functor, with corrections, to quantise the metric. Here we suppose that(M,⌅,⇥) above has additional structure (g, ⇤⇥) where g is a RIemannian (or pseudo-
RIemannian) metric and ⇤⇥ is the Levi-Civita connection.

Before constructing the quantum metric g1 ⇥ ⇥1(A�)⌃1 ⇥
1(A�) note first that the

existence of a bimodule map inverse quantum metric ( , ) ⇤ ⇥1(A�)⌃1⇥
1(A�)� A�

requires that g1 is central[4]. Assuming the quantum metric is a deformation of g,
this comes down at order ⇥ to

(2.6) ⇥g = 0
So this is our 2nd condition after (2.1) and we assume we are in this case.

The functorial choice for the quantised metric is given by regarding the classical
metric as the value at 1 of g̃ ⇤ C⇥(M)� ⇥1(M)⌃0 ⇥

1(M) a morphism in D0(M),
where we take ⇥. Applying the functor then gives

(2.7) gQ = q�1�1,�1(g) = gijdxi ⌃1 dx
j + ⇥

2
⌅ijgpm�p

iq�
q
jndx

m ⌃1 dx
n

in our quantum-central case. One has ⇥QgQ = 0 so this is metric compatible. But
on the other hand, ⇧1gQ = ⇥R; R =Hijgij
One can therefore either live with this or define

g1 = gQ � ⇥

4
gij⌅

is(T j
nm;s �Rj

nms �Rj
mns)dxm ⌃1 dx

n

which now has ⇧1(g1) = 0. In this case ⇥Q(g1) = 0 i⇤ ⇥R = 0 [5].

More generally, write the classical Levi-Civita connection as ⇤⇥ = ⇥ + S where

Sa
bc = 1

2g
ad(Tdbc � Tbcd � Tcbd)

and quantise the two parts separately as ⇥QS = ⇥Q+SQ as a first approximation to
the quantum Levi-Civita connection on the same quantum DGA as above (which
was quantised via ⇥).
Theorem 2.3. [5] There is a unique quantum connection of the form ⇥1 = ⇥QS +
⇥K which is quantum torsion free and for which the symmetric part in the last two
factors of ⇥1g1 = 0. This is fully metric compatible i�

⇤⇥R + ⌅ij grs S
s
jn(Rr

mki + Sr
km;i)dxk ⌃ dxm ⇧ dxn = 0

However, these exist examples, such as the Schwarzschild black hole[5] where this
equation cannot hold (indeed, the left hand side there is independent of the choice of⇥ within the class considered, so in some sense topologically) and we must therefore
live with the antisymmetric part (id⌃⇧)⇥1g1 = O(⇥) as a new feature of quantum
geometry. In classical geometry there cannot be any such antisymmetric part, i.e.
this is a purely quantum e⇤ect.

In what follows we will be interested only in the S = T = 0 case of the above, where
the ⇥ = ⇤⇥. In this case

R = �1
2
gij⌅

isRj
nmsdx

m ⇧ dxn ⇥ ⇥2(M)

∇̂ = ∇ + S∇g = 0 <=>              
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5.2. Relating general ⇤ and the Levi-Civita ⇧⇤. In general the quantising
connection ⇤ may not be the same as the classical Levi-Civita connection ⇧⇤ for
our chosen metric on M . In this section we write the latter in the general form⇤S = ⇤ + S for some S ⌅ ⇥1(M) � ⇥1(M) ⌃0 ⇥1(M) and we assume that the
quantising connection ⇤ obeys ⇤g = 0. The quantising connection has torsion T
and we lower its indices by the Riemannian metric Tabc = gad T d

bc. It is well-known
(see [18]) that given an arbitrary torsion T , there is a unique metric compatible
covariant derivative ⇤ with that torsion, given by

�a
bc = ⇧�a

bc + 1
2g

ad(Tdbc ⇥ Tbcd ⇥ Tcbd) .(5.6)

Here �a
bc in our case is the Christo⇤el symbols for the quantising connection and⇧�a

bc is the Christo⇤el symbols for the Levi-Civita connection so that ⇤S(dxa) =⇥⇧�a
bc dx

b ⌃ dxc. Hence

(5.7) Sa
bc = 1

2g
ad(Tdbc ⇥ Tbcd ⇥ Tcbd).

As a quick check of conventions, note that this formula is consistent with (4.3).
Throughout this section T is arbitrary which fixes ⇤ such that this is metric com-
patible, and S is the above function of T so that ⇤S = ⇧⇤, the Levi-Civita connection.
Lemma 5.4. The curvatures are related by

⇧Rl
ijk =Rl

ijk ⇥ Sl
ki;j + Sl

ji;k ⇥ Tm
jk S

l
mi + Sm

ki S
l
jm ⇥ Sm

ji S
l
km ,

where semicolon is derivative with respect to ⇤.
Proof. This is elementary: ⇧�m

ji = �m
ji ⇥ Sm

ji so that

⇧Rl
ijk = ⇧�l

ki,j ⇥ ⇧�l
ji,k + ⇧�m

ki
⇧�l
jm ⇥ ⇧�m

ji
⇧�l
km=Rl

ijk ⇥ Sl
ki,j + Sl

ji,k ⇥ �m
ki S

l
jm + �m

ji S
l
km ⇥ Sm

ki �
l
jm + Sm

ji �
l
km+Sm

ki S
l
jm ⇥ Sm

ji S
l
km=Rl

ijk ⇥ Sl
ki;j + Sl

ji;k ⇥ Tm
jk S

l
mi + Sm

ki S
l
jm ⇥ Sm

ji S
l
km . �

This gives a di⇤erent point of view on some of the formulae below, if we wish to
rewrite expressions in terms of the Levi-Civita connection. In the same vein:

Proposition 5.5. Suppose that a connection ⇤ is metric-compatible. Then (⇤,�)
are Poisson-compatible if and only if

(⇧⇤k�)ij + �ir Sj
rk ⇥ �jrSi

rk = 0
or equivalently

�jmSi
mk = 1

2
⇥(⇧⇤k�)ij ⇥ (⇧⇤r�)mj gri gmk + (⇧⇤r�)im grj gmk ⌅ .

Proof. The compatibility condition gives

0 = (⇧⇤m�)ij + �ik (T j
km + 1

2g
jd(Tdmk ⇥ Tmkd ⇥ Tkmd))+�kj (T i

km + 1
2g

id(Tdmk ⇥ Tmkd ⇥ Tkmd))= (⇧⇤m�)ij + �ik 1
2g

jd(Tdkm ⇥ Tmkd ⇥ Tkmd)+�kj 1
2g

id(Tdkm ⇥ Tmkd ⇥ Tkmd)= (⇧⇤m�)ij + �ik 1
2g

jd(Tdkm + Tmdk ⇥ Tkmd)+�kj 1
2g

id(Tdkm + Tmdk ⇥ Tkmd)

Poisson compat <=>              
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Proof. The compatibility condition gives
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km + 1
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km + 1
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id(Tdkm + Tmdk ⇥ Tkmd)

=> `quant metric’ g1 := q−1(g −
λ

4
gijω

is(T j
nm;s − Rj

nms + Rj
mns)dxm

⊗0dxn)

∇̂Suppose      an actual connection restricting to l.c. of classical g

=> `quantum levi-civita conn’  =>   

=> `quant wedge product’

Thm.        monoidal functor to O(  )
        Q: Bundles w. Connection          A-Bimodules w. bimodule Connection  

∃

−→

λ
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Similarly, in the paper [4] we found the commutator of a function a and a 1-form
⇥ � �1

[a, ⇥]� = �⇤ij a,i (⇥j⇥) +O(�2) ,(3.5)

so we could define the deformed product of a function a and a 1-form ⇥ as

a ⇧ ⇥ = a ⇥ + �⇤ij a,i (⇥j⇥)�2 +O(�2) ,
⇥ ⇧ a = a ⇥ � �⇤ij a,i (⇥j⇥)�2 +O(�2) .(3.6)

Again we drop the corrections and regard these as defining a bimodule structure
�1 ⌃1 A1 � �1 and A1 ⌃1 �

1 � �1 where �1 in this context is over k[�]�(�2).
More generally, let (E,⇥E) be a classical bundle and covariant derivative on it, and
define, for e � E,

a ⇧ e = ae + �

2
⇤ij a,i (⇥Eje) +O(�2) ,

e ⇧ a = ae � �

2
⇤ij a,i (⇥Eje) +O(�2) .(3.7)

A brief check reveals that the following associative laws hold to errors in O(�2):
(a ⇧ b) ⇧ e = a ⇧ (b ⇧ e) , (a ⇧ e) ⇧ b = a ⇧ (e ⇧ b) , (e ⇧ a) ⇧ b = e ⇧ (a ⇧ b) ,(3.8)

so we have a bimodule structure E ⌃1 A1 � E and A1 ⌃1 E � E.

We let D̃0 be the category of bundles equipped with covariant derivatives and
bundle maps (not required to intertwine the connections). Let Ẽ1 be the category
of A1-bimodules but with left module maps.

Lemma 3.2. We define the functor Q ⇤ D̃0 � Ẽ1 sending objects to objects according
to (3.7) and sending bundle maps T ⇤ E � F to left module maps

Q(T ) = T + �

2
⇤ij ⇥Fi ⌅ (⇥FjT � T⇥Ej).

The functor restricts to Q ⇤ D0 � E1 as Q(T ) = T .
Proof. Take T0 ⇤ E � F a bundle map. We aim for the bimodule properties

(T0 + �T1)(a ⇧ e) = a ⇧ (T0 + �T1)(e) ,(T0 + �T1)(e ⇧ a) = (T0 + �T1)(e) ⇧ a ,(3.9)

which to errors in O(�2) is
T0(a ⇧ e) + �T1(ae) = a ⇧ T0(e) + �aT1(e) ,
T0(e ⇧ a) + �T1(ea) = T0(e) ⇧ a + �T1(e)a .(3.10)

Using the formula (3.7) for the deformed product gives our conditions as

T0(⇤ij a,i (⇥Eje)�2) + T1(ae) = ⇤ij a,i (⇥FjT0(e))�2 + aT1(e) ,�T0(⇤ij a,i (⇥Eje)�2) + T1(ea) = �⇤ij a,i (⇥FjT0(e))�2 + T1(e)a .(3.11)

It is not possible to satisfy both parts of (3.11) unless T0 preserves the covariant
derivatives, i.e.

⇥FjT0(e) = T0(⇥Eje)(3.12)

and in this case we set T1 = 0 as a solution and Q(T0) = T0.
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Q(E) = E but with deformed product ∀a ∈ A, e ∈ E

… etc
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NONCOMMUTATIVE SPHERICALLY SYMMETRIC

SPACETIMES AT SEMICLASSICAL ORDER

CHRISTOPHER FRITZ & SHAHN MAJID

Abstract. Working within the recent formalism of Poisson-Riemannian ge-
ometry, we completely solve the case of generic spherically symmetric metric
and spherically symmetric Poisson-bracket to find a unique answer for the
quantum di↵erential calculus, quantum metric and quantum Levi-Civita con-
nection at semiclassical order O(�). Here � is the deformation parameter,
plausibly the Planck scale. We find that r, t,dr,dt are all forced to be central,
i.e. undeformed at order �, while for each value of r, t we are forced to have a
fuzzy sphere of radius r with a unique di↵erential calculus which is necessarily
nonassociative at order �

2. We give the spherically symmetric quantisation
of the FLRW cosmology in detail and also recover a previous analysis for the
Schwarzschild black hole, now showing that the quantum Ricci tensor for the
latter vanishes at order �. The quantum Laplace-Beltrami operator for spher-
ically symmetric models turns out to be undeformed at order � while more
generally in Poisson-Riemannian geometry we show that it deforms to

�f + �

2
!
↵�(Ric�↵ − S�

;↵)(∇̂�df)� +O(�2)
in terms of the classical Levi-Civita connection ∇̂, the contorsion tensor S, the
Poisson-bivector ! and the Ricci curvature of the Poisson-connection that con-
trols the quantum di↵erential structure. The Majid-Ruegg spacetime [x, t] =
�x with its standard calculus and unique quantum metric provides an example
with nontrivial correction to the Laplacian at order �.

1. Introduction

In recent years it has come to be fairly widely accepted that quantum gravity e↵ects
could render spacetime better modelled as a noncommutative or ‘quantum’ geom-
etry than a classical one[16]. The remarkable discovery here is that such a quan-
tum spacetime hypothesis is highly restrictive in that not every classical Riemann-
ian or pseudo-Riemannian geometry (M,g) can be quantised while also respecting
symmetries[8, 19], starting with the quantum anomaly for di↵erential calculus or
no-go theorems introduced in [4, 5]. More recently a theory of ‘Poisson-Riemannian
geometry’ in [9] provided a systematic analysis of the constraints on the classical
geometry for the quantisation to exist at least at lowest deformation order. This
emergence of a well-defined order � deformation theory in [9] means that a specific
paradigm of physics, namely of lowest order quantum gravity e↵ects, emerges out

2000 Mathematics Subject Classification. Primary 81R50, 58B32, 83C57.
Key words and phrases. noncommutative geometry, quantum groups, quantum gravity, quan-

tum cosmology.
This work is supported in part by the Science and Technology Facilities Council (grant number
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2.5. Fuzzy nonassociative sphere revisited. The case of the sphere in Poisson-
Riemannian geometry is covered in [10] mainly in very explicit cartesian coordinates
where we broke the rotational symmetry. However, the results are fully rotationally
invariant as is more evident if we work with zi, i = 1,2,3 and the relation ∑i zi2

= 1.
We took ∇ = ∇̂ (the Levi-Civita connection) so S = 0, and ! the inverse of the
canonical volume 2-form on the unit sphere. Then the results of [10] give us a
particular ‘fuzzy sphere’ di↵erential calculus

[zi, zj
]● = �✏ij

kzk, [zi,dzj
]● = �zj✏i

mnzmdzn.

to order �. These are initially valid for i = 1,2 but must hold in this form for
i = 1,2,3 by rotational symmetry of both the Poisson bracket and the Levi-Civita
connection. One also finds from the algebra that zm

●dzm
= 0 (sum over m = 1,2,3)

at order � on di↵erentiating the radius 1 relation. Here ⌦1 is a projective module
with dzi as a redundant set of generators and a relation. We also have

{dzi,dzj
}● = �(3zizj

− �ij)Vol

to order � as derived in [10] for i = 1,2 and which then holds for i = 1,2,3. This
can also be derived by applying d to the bimodule relations and using dzi

∧ dzj
=

✏ij
kzkVol at the classical level on the unit sphere. We will also use the antisymmetric

lift �Vol = 1
2(z

3
)
−1
(dz1 ⊗ dz2 − dz2 ⊗ dz1) at the classical level. The classical sphere

metric gµ⌫ is given in [10] in the z1, z2 coordinates but we can also write it as

g =
3

�

i=1
dzi
⊗ dzi

Similarly, the inverse metric and metric inner product are

gµ⌫
= �µ⌫ − zµz⌫ , (dzi,dzj

) = �ij − zizj

for µ, ⌫ = 1,2, which extends as the second equality for i, j = 1,2,3. The sphere is
2-dimensional so only two of the zi are independent in any coordinate patch but
the expressions themselves are rotationally invariant in terms of all three.

The work [10] also computes the quantum metric and quantum Levi-Civita con-
nection at order �. We have

g1 =gµ⌫dzµ
⊗1 dz⌫

−
�

2(z3)2
dz3 ⊗1 ✏3ijz

idzj
+ ��Vol

=gµ⌫dzµ
⊗1 dz⌫

+
�

2(z3)2
✏3ij �z

3dzi
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2.5. Fuzzy nonassociative sphere revisited. The case of the sphere in Poisson-
Riemannian geometry is covered in [10] mainly in very explicit cartesian coordinates
where we broke the rotational symmetry. However, the results are fully rotationally
invariant as is more evident if we work with zi, i = 1,2,3 and the relation ∑i zi2

= 1.
We took ∇ = ∇̂ (the Levi-Civita connection) so S = 0, and ! the inverse of the
canonical volume 2-form on the unit sphere. Then the results of [10] give us a
particular ‘fuzzy sphere’ di↵erential calculus
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]● = �✏ij
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]● = �zj✏i

mnzmdzn.

to order �. These are initially valid for i = 1,2 but must hold in this form for
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associative algebra U(su2),  non associative diff calculus due to 
curvature
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The result (and similarly in any rotated coordinate chart) is

i1(dz1 ∧ dz2) =
1

2
�dz1 ⊗1 dz2 − dz2 ⊗1 z1� −

3�

4z3
g

Ricci1 = −
1

2
g1

where the latter in our conventions is analogous to the classical case. And from
this or from (2.23) we get the quantum scalar curvature

S1 = −
1

2
Ŝ, Ŝ = R̂µ⌫gµ⌫

= 2

the same as classically in our conventions, so this has no corrections at order �.
As remarked in the general theory, the quantum Ricci scalar is independent of the
choice of lift I.

We also find no correction to the Laplacian at order � since the classical Ricci
tensor is proportional to the metric hence the contraction in Theorem 2.3 gives
!↵�
(∇̂�df)↵ which factors through ∇̂ ∧ df = 0 due to zero torsion of the Levi-

Civita connection.

We close with some other comments about the model. In fact the parameter �
in this model is dimensionless and if we want to have the usual finite-dimensional
‘spin j’ representations of our algebra then we need

� = ı�
�

j(j + 1)

for some natural number j as a quantisation condition on the parameter. Our reality
conventions require � imaginary. It is also known from [7] that this di↵erential
algebra arises from twisting by a cochain at least to order �2 but in such a way that
the twisting also induces the correct di↵erential structure at order �, i.e. as given
by the Levi-Civita connection. We take U(so1,3) with generators and relations

[Mi,Mj] = ✏ijkMk, [Mi,Nj] = ✏ijkNk, [Ni,Nj] = −✏ijkMk

acting on the classical zi (i.e. converting [7] to the coordinate algebra) as,

Mi▷zj
= ✏ijkzk, Ni▷zj

= zizj
− �ij .

This is the action of so1,3 on the ‘sphere at infinity’. The cochain we need is then[7]

F −1 = 1 + �f +
�2

2
f2
+�, f =

1

2
Mi ⊗Ni

where the higher terms are conjectured to exist in such a way that the algebra
remains associative at all orders (and gives the quantisation of S2 as a quotient of
U(su2)). On the other hand cochain twisting extends the di↵erential calculus to
all orders as a graded quasi-algebra in the sense of [8]. Specifically, if we start with
the classical algebra and exterior algebra on the sphere, the deformed products are

zi
● zj
= (F −1▷zi

)(F −2▷zj
) = zizj

+
�

2
✏ijkzk

zi
● dzj

= (F −1▷zi
)dF −2▷zj

= zidzj
+

�

2
zj✏imnzmdzn

dzj
● zi
= (F −1▷dzj

)dF −2▷zi
= (dzj

)zi
−

�

2
zi✏jmnzmdzn

−
�

2
✏ijmdzm

=>              undeformed at first order

X
(zi)2 = 1

�1 = �
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prove in the present section that this is generically true. For the metric we choose
a diagonal form

g = a2(r, t)dt⊗ dt + b2(r, t)dr ⊗ dr + c2(r, t)(d✓ ⊗ d✓ + sin2(✓)d�⊗ d�)
where a, b, c are arbitrary functional parameters. The Poisson tensor is taken to be
the same as in Section 3, once again parameterized by

!23 = f(t, r)
sin ✓

= −!32, !01 = g(t, r) = −!10

The Christo↵el symbols for the above metric are

(4.1)

�̂0
00 =

@ta

a
, �̂0

01 =
@ra

a
, �̂0

33 = −
b@tb sin2(✓)

a2
, �̂0

11 = −
b@tb

a2
, �̂0

22 = −
c@tc

a2

�̂1
00 = −

a@ra

b2
, �̂1

11 =
@rb

b
, �̂1

33 = −
b@rb sin2(✓)

b2
, �̂1

01 =
@tb

b
, �̂1

22 = −
c@rc

b2

�̂2
02 =

@tc

c
, �̂2

21 =
@rc

c
, �̂2

33 = − sin(✓) cos(✓)

�̂3
03 =

@tc

c
, �̂3

31 =
@rc

c
, �̂3

23 = cot(✓)

Now for the quantum Levi-Civita connection.

Theorem 4.1. For a generic spherically symmetric metric with functional param-
eters a, b, c and spherically symmetric Poisson tensor, the Poisson-compatibility
(2.2) and the quantum Levi-Civita condition (2.12) require up to normalisation
that g(r, t) = 0 and f(r, t) = 1 and the contorsion tensor components

S022 = c@tc, S122 = c@rc, S033 = c@tc sin2(✓), S133 = c@rc sin2(✓)
S120 = S123 = S223 = S320 = S130 = S132 = S230 = S233 = 0

up to the outer antisymmetry of Sµ⌫� . The remaining components Sµ0⌫ , Sµ1⌫

remain undetermined but do not a↵ect !↵�∇�, which is unique. The relations of
the quantum algebra are uniquely determined to O(�) as those of the fuzzy sphere

[zi, zj] = �✏ij
kzk, [zi,dzj] = �zj✏i

mnzmdzn

as in Section 2.5 and

[t, xµ] = [r, xµ] = 0, [xµ,dt] = [xµ,dr] = 0

so that t, r, dt, dr are central at order �.

Proof. The first part is very similar to the proof of Proposition 3.1 but with more
complicated expressions. We once again require that either f = k or g = 0 for ! to be
Poisson. Taking first f = k and leaving g arbitrary gives the Poisson compatibility
condition (2.2) as

S1
02 = 0, S3

01 = 0, S3
22 = 0, S3

10 = 0, S0
12 = 0, S3

32 = 0,

gabS0
01 + ab@rg + ga@rb + gb@ra = 0, ab2@tg + abg@tb + b2g@ta + a3gS0

11 = 0

c2S3
31 − b2S1

22 + 2c@rc = 0, kc2S0
31 + gb2 sin(✓)S1

12 = 0, g@tc sin(✓)− cS1
32 = 0,

a2g sin(✓)S3
12 − ka2S0

22 − kc@tc = 0, gb2S3
02 sin(✓) + kb2S1

22 sin(✓) − kc@rc = 0,

S1
12 + S0

02 = 0, kcS0
32 + g@rc sin(✓) = 0, g sin(✓)S3

11 + kS0
21 = 0,

kc@rc + gb2 sin(✓)S3
02 + kc2S3

31 = 0, kd3 sin(✓)S3
21 − gb2@tc = 0,

c2S3
30+a2S0

22a
2+2c@rc = 0, gS3

00b
2 sin(✓)+ka2S0

21 = 0, kc2S0
31−gb2S0

02 = 0

kc3 sin(✓)S3
20−a2g@rc = 0, kc@tc−ga2S3

12 sin(✓)+kc2S3
30, a2S3

11−b2S3
00 = 0

Uniqueness theorem w/Fritz  Class. Qua. Grav 2017

generic spherically symmetric metric =>   unique quantisation to        +O(�2)
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=>                      central `unquantized radius and time’ and at each r,tr, t, dr, dt
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X
(zi)2 = 1

E.g. Schwarzschild black hole; Ric1 = O(�2)

`non associative fuzzy sphere’ as above

If         this could apply to quantum mechanics …
If          this is a new paradigm of semi-classical quantum gravity

� = ~
� = �P


