Sporadic & Exceptional

YANG-HUI HE

何楊輝

Dept of Mathematics, City, University of London Merton College, University of Oxford School of Physics, NanKai University

Geometry, Quantum Topology and Asymptotics,

Sandbjerg Estate, Sønderborg, Jul 2018 幾何、量子拓撲 與 漸進分析

Acknowledgements

- 1505.06742 YHH, John McKay
- 1408.2083, 1308.5233 YHH, John McKay
- 1211.1931 YHH, John McKay, James Read;
- 1309.2326 YHH, James Read
- 1711.09253, Alexander Chen, YHH, John McKay

Classification Problems: regulars vs. exceptionals

- regular solids/tessellations: infinite families of shapes and a few special ones
 - e.g. regular polygons vs. Platonics, prisms vs. Archimedeans
 - tessellation of Riemann surfaces
- Lie (semi-simple) algebras: classical $(ABCD)_n$ vs. exceptionals EFG
- Finite (simple) groups: Lie groups over finite fields vs. Sporadics
- Finite-type quiver representations: $(AD)_n$ vs. E
- 2D CFT: modular-invariant partition functions are ADE
- Modular curves $\Gamma_0(N)\backslash\mathcal{H}$: genus 0 means N one of 15 values
- etc. . . .
- LESSON: examine the specialness of exceptionals, wealth of structures, possibly INTERWOVEN → Exceptionology

McKay Correspondence, ADE-ology

Platonic Solids:

- $\bullet \ \, {\rm Sym \ in} \ \, SO(3) \colon \, [{\rm Cyclic}] \ \, {\overline{\mathbb{Z}}/n\mathbb{Z}}, \, \, [{\rm Dihedral}] \ \, {\color{red}D_n}, \, \, [{\rm T}] \ \, {\color{red}A_4}, \, [{\rm C/O}] \ \, {\color{red}S_4}, \, [{\rm D/I}] \ \, {\color{red}A_5}$
- Embed in SU(2): $0 \to \mathbb{Z}/2\mathbb{Z} \to SU(2) \to SO(3) \to 0$

G	\hat{A}_n	\hat{D}_n	\hat{T}	Ô	\hat{I}
G	n	4n	24	48	120

ADE pattern

• McKay [1980]: places in a concrete setting, take defining ${\bf 2}$ of G and form multiplicity decomposition over irreps ${\bf r}_i$

$$\mathbf{2} \otimes \mathbf{r}_i = \bigoplus_{j=1}^n a_{ij} \mathbf{r}_j \ , \quad n = \#Conj(G) = \#Irrep(G)$$

• $a_{ij} = 2\mathbb{I}$ — Cartan mat. of affine ADE! i.e., a_{ij} is adjacency mat of quivers

$$\hat{D}_{n} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D}_{n} & \hat{D}_{n} \\ \hat{D}_{n} & \hat{D}_{n} \end{pmatrix} = \begin{pmatrix} \hat{D$$

 $r_i = \dim \mathbf{r}_i = \mathsf{Dynkin}$ labels (dual Coxeter numbers), in particular $\sum_i r_i^2 = |G|$

- Algebro-geometrically: $\mathbb{C}^2/(G\subset SU(2))\simeq$ Local K3
 - use to construct gauge theories from D-branes [Douglas-Moore, '96]
 - $\mathbb{C}^3/(G\subset SU(3))\simeq$ Local Calabi Yau 3 [Hanany-YHH, 98]

Trinities

- Classical Enumerative Geometry
 - ullet Cayley-Salmon, 1849: 27 lines on cubic surface $[\mathbb{P}^3|3]$
 - Jacobi, 1850: 28 bitangents of quartic curve $[\mathbb{P}^2|4]$
 - Clebsch, 1863: 120 tritangent planes of sextic curve $[\mathbb{P}^4|1,2,3]$
- Recall dim of fundamental representations (cf. Hitchin [2000] Clay Lecture)

```
\begin{aligned} \dim_F(E_6) &= 27 \ , \\ \dim_F(E_7) &= 56 = 28 \times 2 \ , \\ \dim_F(E_8) &= 248 = 120 \times 2 + 8 \ . \end{aligned}
```

- Rmk: Arnold [1980s]: $\mathbb{R}, \mathbb{C}, \mathbb{H} \sim E_{6,7,8}$ a unified scheme (?)
 - $PSL(n,p) \curvearrowright \mathbb{P}^n(\mathbb{F}_p)$ non-trivially on only p points (out of $\frac{p^n-1}{p-1}$) and simple iff p=5,7,11, when $\simeq A_4 \times \mathbb{Z}_5, S_4 \times \mathbb{Z}_7, A_5 \times \mathbb{Z}_{11}$; (5,7,11)=2r+3;
 - #edges of $(T,O,I)=(2\cdot 3,3\cdot 4,5\cdot 6)=(r+1)(r+2); \ r=\dim_{\mathbb{R}}(\mathbb{R},\mathbb{C},\mathbb{H})$

A Geometric Framework: del Pezzo Surfaces $E_{n=0...8}$

- dP_n : \mathbb{P}^2 blown up at up to n=8 generic points is surface of $\deg=9-n$
 - intersection matrix of curve classes $H^2(dP_n,\mathbb{Z})$ is Cartan matrix of affine E_n (rmk: $E_{5,4,3,2,1} \simeq (D_5,D_4,A_2\times A_1,A_2,A_1)$)

cubic surface
$$[3|3]$$
 is dP_6 : with 27 (-1) -curves $dP_7 \to \mathbb{P}^2$ branched on $[2|4]$: 56 (-1) -curves pair to 28 bitangents $dP_8 \to \mathbb{P}^2$ branched on $[4|1,2,3]$: 240 (-1) -curves pair to 120

tritangent planes

- #(-1) curves = Rank(Mori cone of effective curve classes)
- also recall: # bitangents to genus g curve $=2^{g-1}(2^g-1)$

$$g([2|4]) = 3,$$
 $g([4|1,2,3]) = 4$

• Rmk: Fermat model of [4|1,2,3] is Bring's sextic

$$\mathcal{B} = \left\{ \sum_{i} x_i^3 = \sum_{i} x_i^2 = \sum_{i} x_i = 0 \right\} \subset \mathbb{P}^4$$

Sporadic Simple Groups

- Classification of finite simple groups complete (from Galois to circa. 2008):
 - infinite families: $\mathbb{Z}/p\mathbb{Z}$, $A_{n>5}$, Lie groups over \mathbb{F}_q
 - 26 sporadics (exceptionals)
- largest 3 sporadics are

•	•	
Name	Notation	Order
Monster	M, F_1	$2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \sim 10^{54}$
Baby Monster	\mathbb{B} , F_2	$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47 \sim 10^{33}$
Fischer 24'	Fi'_{24}, F_{3+}	$2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29 \sim 10^{24}$

- Monster: 194 conjugacy classes/irreps of degree (linear character table 194×194) $r_i = \{1, 196883, 21296876, 842609326, 18538750076, \ldots\}$
- McKay, 1978 observation: 196883 + 1 = 196884

Monstrous Moonshine

- absolute invariant (attributed to Klein, but known earlier) j-function
 - \bullet meromorphic on upper half-plane $\mathcal{H}\ni z$ and $j(\gamma\cdot z)=j(\frac{az+b}{cz+d})=j(z)$,

$$\gamma \in \Gamma := PSL(2; \mathbb{Z})$$

- ullet unique: all invariants $=\mathbb{Q}(j) \leadsto \mathsf{Hauptmodul}$ or principal modulus
- ullet "weight 0 modular form", but pole at $i\infty$, Fourier series (nome $q:=\exp(\pi iz)$)

$$j(q) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \dots$$

- $j(z)=1728 \frac{g_2^3(z)}{\Delta(z)}$, with g_k Eisenstein series, $\Delta(z)=g_2^3-27g_3^2=\eta(z)^{24}$
- McKay's observation goes on

$$\begin{array}{rcl}
1 & = & r_1 \\
196884 & = & r_1 + r_2 \\
21493760 & = & r_1 + r_2 + r_3 \\
864299970 & = & 2r_1 + 2r_2 + r_3 + r_4
\end{array}$$

THEOREM [Borcherds 1992]

[Proved Moonshine Conjecture: Conway-Norton, McKay-Thompson, Atkin-Fong-Smith, Frenkel-Lepowsky-Meurman] There exists an infinite-dim graded module $V=V_0\oplus V_1\oplus V_2\oplus\dots$ of $\mathbb M$ such that

- $V_0 = \rho_1$, $V_1 = \{0\}$, $V_2 = \rho_1 \oplus \rho_{196883}$, $V_3 = \rho_1 \oplus \rho_{196883} \oplus \rho_{21296876}$, ...
- ullet for each conjugacy class g of \mathbb{M} , define McKay-Thompson series

$$T_g(q) = q^{-1} \sum_{k=1}^{\infty} \operatorname{Ch}_{V_k}(g) q^k = q^{-1} + 0 + h_1(g) q + h_2(g) q^2 + \dots$$

- $T_{g=\mathbb{I}} = j(q)$;
- $T_g(q)$ is (normalized) generator of a genus zero function field for a group G between $\Gamma_0(N)$ and its normalizer $\Gamma_0(N)^+$ in $PSL(2,\mathbb{R})$ (genus is that of modular curve $G\backslash\mathcal{H}$);
- N s.t. $N/n = h \in \mathbb{Z}_{>0}$; h|24, $h^2|N$ with $n = \operatorname{Order}(g)$

Remarks

- Proof used Vertex Operator Algebras from string theory/CFT
- congruence group $\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \bmod N = 0 \right\}$; normalizer $\Gamma_0(N)^+ := \left\{ \frac{1}{\sqrt{e}} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2,\mathbb{R}) \;,\; \mid a,b,c,d,e \in \mathbb{Z},\; ad-bc = e \;,\; e|N,\; e|a,\; e|d,\; N|c \right\}$
- T_g is the Hauptmodul of group G st. $\Gamma_0(N) \subset G \subset \Gamma_0(N)^+$ commensurate with $\Gamma = PSL(2; \mathbb{Z})$ (i.e., $G \cap \Gamma$ is finite index in Γ and in G)
- Jack Daniels Problem: When N is prime p, $\operatorname{genus}(\Gamma(p)^+)=0$ iff p is one of the 15 monstrous primes $[\operatorname{Ogg},\ 1974]$, explanation OPEN? Also: p is the 15 supersingular primes for elliptics curves, i.e., over \mathbb{F}_{p^r} same as over \mathbb{F}_p

The "Missing" Constant

- monstrous moonshine module $V_1=\{0\}$, so constant is renormalized; however, McKay also noticed that 744 in j(q) is 248×3
 - $j(q)^{\frac{1}{3}} = q^{-\frac{1}{3}} \left(1 + 248q + 4124q^2 + 34752q^3 + \ldots \right)$
 - 248 = 248, 4124 = 3875 + 248 + 1, $34752 = 30380 + 3875 + 2 \cdot 248 + 1 \dots$
 - ullet Kac [1978]: $j(q)^{rac{1}{3}}$ is the character for the level-1 heightest-weight rep of \hat{E}_8
 - YHH-McKay '14: $j(q)^{\frac{1}{n}}$ for n|24 have integer coefs; n=1,2,3 are McKay-Thompson series, only n=3 has $\mathbb{Z}_{\geq 0}$ coefs, what about rest?
- perhaps not surprising: $j(z)=1728\frac{g_2^3(z)}{\Delta(z)}$ and $g_2=\theta_{\Lambda(E_8)}(q)=\sum_{x\in\Lambda(E_8)}q^{|x|^2/2}=1+240\sum_{n=1}^\infty\sigma_3(n)q^n$ is the theta-series of root lattice of E_8 (1st non-trivial unimodular even lattice), 2 curiosities
 - explain the 240 in terms of the (-1) curves?
 - $\sigma_1(240) = 744$

A Pair of Trinities

- ullet The modular function j(q) knows about ${\mathbb M}$ AND E_8
- ullet Big Picture for the largest 3 (NB., Schur multipliers are resp (1,2,3))?

Modularity

Sporadic Groups (Schur Multiplier)	Lie Algebras (affine \mathbb{Z}_n symmetry)
$\mathbb{M}(1)$	$E_8(1)$
$\mathbb{B}(2)$	$E_7(2)$
$Fi'_{24}(3)$	$E_6(3)$

- More evidence [McKay, 1985]:
 - \bullet ATLAS notation: conjugacy class xN , x order and N capital letter indexing

Conj Class	1A	2A	2B	3A	
Centralizer	M	$2.\mathbb{B}$	$2^{1+24}.Co_1$	$3.Fi'_{24}$	

\mathbb{M} and E_8 -Dynkin

Only 2 involution classes (2A, 2B); 2A*2A → only 9 classes (out of 194):

- ullet orders of conjugacy classes are precisely E_8 Dynkin labels!
- OPEN: no explanation, especially concept of adjacency
- amazing that a group as large as M multiplies to only up to order 6: M is a
 6-transposition group

Pattern persists

• Baby is 4-transposition and Fischer is 3-transposition:

\mathbb{B}	Fi_{24}^{\prime}
\hat{E}_{7}^{2c}	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$1 - 2 - 3 = 4 - 2$ \hat{F}_4	$1 - 2 \equiv 3$ \hat{G}_2

 Höhn-Lam-Yamaguchi, 2010, persists for our pair of trinities; and constructed the VOA/moonshine modules for them (cf. Queen, Duncan, Gannon)

$(\mathbb{M}, \mathbb{B}, Fi'_{24})$ versus $E_{8,7,6}$

- A geometric/modular setting [YHH-McKay, '15]?
- Cusp Numbers
 - Cusps for any congruence subgroup $G\subset \Gamma:=PSL(2;\mathbb{Z})$: finite set of Γ -orbits in $\mathbb{Q}\cup\infty$; Def cusp number =|C(G)|
 - ullet Rmk: need to add cusp when forming modular curve $X(G) \simeq G \backslash \mathcal{H}$
 - $|C(\Gamma)| = 1$ since $C(PSL(2; \mathbb{Z})) = {\infty};$
 - recall $\Gamma_0(N)$, $|C(\Gamma_0(N))| = \sum_{d \mid N, d > 0} \phi(\gcd(d, N/d))$
 - need more sophistication: |C(G)| for moonshine group $\Gamma_0(N) \subset G \subset \Gamma_0(N)^+$
- ullet Conway-Norton, 1979: computed all McKay-Thomson series and much info (e.g. cusps) for their associated G
- Norton, Cummins et al: created a database over the years

Moonshine Groups in more Detail

- All moonshine groups for \mathbb{M} (i.e., the genus 0 modular groups for McKay-Thompson series) are of the form $\langle \Gamma_0(n|h), w_{e_1}, w_{e_2}, \ldots \rangle$ for Hall divisors e_i of n/h; $N=nh^2$
 - Define Atkin-Lehner involution $w_e = \frac{1}{\sqrt{e}} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left(\begin{array}{cc} e & 0 \\ 0 & 1 \end{array} \right)$ with e||N (Hall divisor, e|N and $\gcd(e,h:=\frac{N}{e})=1$), $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(h)$, $d\equiv 0 (\bmod \ e)$
 - Define $F_h:=\left(egin{array}{cc} h & 0 \\ 0 & 1 \end{array}
 ight)$, $\Gamma_0(n|h):=F_h^{-1}\Gamma_0(\frac{n}{h})F_h$ and $w_e:=F_h^{-1}W_eF_h$
- NB. Of the 194 conjugacy classes of \mathbb{M} , some are just in Galois orbits, \sim 172 classes (i.e., rational character table is 172×172)
 - Rmk: Thus 172 distinct McKay-Thompson
 - Rmk: There are replication formulae (functional equations) reducing 172 further to 163 (WHY largest Heegner number?)

Explicit Examples

Class	McKay-Thompson	G	C(G)
1A	$1728 \frac{g_2^3(z)}{\eta(z)^{24}} - 744 = j_M(q)$	$PSL(2; \mathbb{Z})$	1
2A	$\left(\left(\frac{\eta(q)}{\eta(q^2)}\right)^{12} + 2^6 \left(\frac{\eta(q^2)}{\eta(q)}\right)^{12}\right)^2 - 104$ $= q^{-1} + 4372q + 96256q^2 + 1240002q^3 + \dots$	$\langle \Gamma_0(2), w_1, w_2 \rangle$	1
2B	$24 + \frac{\eta(q)^{24}}{\eta(q^2)^{24}}$ $= q^{-1} + 276q - 2048q^2 + 11202q^3 + \dots$	$\Gamma_0(2)$	2
3C	$q^{\frac{1}{3}} \left(\frac{\eta(q)}{\eta(q^2)^8} + 256 \frac{\eta(q^2)}{\eta(q)} \right)^{16}$ $= q^{-1} + 248q + 4124q^2 + 34752q^3 + \dots$	$\langle \Gamma_0(3), w_3 \rangle$	1

Monstrous Cusps: \mathbb{M} and E_8

 Take the 172 (rational) classes (Galois conjugates have same cusps, McKay-Thompson, etc);

$$\begin{aligned} &(\mathsf{Class}\;\mathsf{Name},|\mathsf{Cusp}|) = \\ &\{(1A,1),(2A,1),(2B,2),(3A,1),(3B,2),\dots,(120A,1),(119AB,1)\} \end{aligned}$$

bin count of cusp numbers: $(1^{60}, 2^{75}, 3^{12}, 4^{20}, 6^3, 8^2)$

- \bullet Observation: $\sum_g C_g(\mathbb{M}) = 360 = 3\cdot 120$, $\quad \sum_g C_g(\mathbb{M})^2 = 1024 = 2^{10}$
- ullet recall: 120 is the #tritangents on sextic (or 240 (-1)curves on dP_8)
- next in the family of Bring's sextic, genus 4 curve is Fricke's octavic, genus 9 curve $\mathcal{F}=\{\sum_i x_i^4=\sum_i x_i^2=\sum_i x_i=0\}\subset \mathbb{P}^4$ has 2.2^{10} bitangents

Baby Moonshine

- ullet Class 2A of $\mathbb M$ has $2.\mathbb B$ (double cover of Baby) as centralizer
 - $\dim(\operatorname{irreps}(2.\mathbb{B})) = 1$, 4371, 96255, 1139374 ..., cf. T_{2A}
 - ullet 247 conjugacy classes (minus conjugates) \sim 207 distinct McKay-Thompson
 - Höhn 2007 Moonshine for 2.[®] (explicit VOA and M-T)
 - some M-T coincide with M M-T, some are new
- Cummins, Ford, McKay, Mahler, Norton, 1990s M-T belong to a class of so-called replicable functions
 - \bullet Recall (classical): $\sum\limits_{ad=n,0 < b < d} j(\frac{a\tau + b}{d}) = \mathsf{Poly}_n(j(\tau))$
 - \bullet analogue for all M-T $T(q) \sim q^{-1} + \sum\limits_k b_k q^k$ satisfying the replication formulae
 - 616 of these, of genus 0; Notation [Norton] (n number x letter)

 $nX(\mathsf{monstrous}), \quad nx, \quad \tilde{nx}$

Baby and E_7

ullet The 207 McKay-Thompson series for $2.\mathbb{B}$ and associated cusp numbers

(conjugacy class [Atlas notation], M-T [Replicable notation],
$$|C(G)|$$
) = $(1a, 2A, 1), (2a, 4°b, 1), (2b, 2a, 1), \dots, (104b, 208°a, 1), (110a, 220°b, 1)$

- \bullet cusp numbers are $(1^{82}, 2^{61}, 3^{30}, 4^{25}, 6^9)$
- \bullet Observation: $\sum_g C_g(2.\mathbb{B}) = 448 = 2^3 \cdot 56 \ , \quad \sum_g C_g^2(2.\mathbb{B}) = 1320$
- Recall: $\dim_F(E_7) = \#(-1)$ curves on $dP_7 = 56 \sim$ #bitangents on [2|4] = 28

Fischer and E_6

- Class 3A of \mathbb{M} has $3.Fi'_{24}$ (triple cover of Fischer) as centralizer
 - dim(irreps(3. Fi'_{24})) = 1, 8671, 57477 ..., cf. T_{3A}
 - 265 conjugacy classes (minus conjugates) → 213 distinct M-T
 - Matias 2014: explicit VOA and M-T (conjugacy class [Atlas notation], M-T [Replicable notation], |C(G)|) = $(1a,3A,1), (2a,6A,1), (2b,6C,2), \dots (45d,45a,1), (60e,60c,1)$
- Observation:

$$\sum_g C_g(3.Fi'_{24}) = 440 = 2^4 \cdot 27 + 8(?) , \qquad \sum_g C_g^2(3.Fi'_{24}) = 1290$$

- Recall: $\dim_F(E_6) = \#$ lines on $dP_6 = 27$
- curious +8 in reverse to $\dim_F(E_8) = 248 = 120 \times 2 + 8$

Cusp Character

- Rmk: Geometric perspective on moonshine? Witten, Hirzebruch
 - 24-d spin manifold w/ elliptic (Witten) genus j(q) & $\mathbb M$ action
 - ullet Hopkins-Mahowald, 1998 found a manifold with all prop. except action of ${\mathbb M}$
- Thm: [YHH-McKay] For $\mathbb{M}, 2.\mathbb{B}, 3.Fi'_{24}$, \exists a "cusp representation", i.e., weighted centralizer rep: take $v_{\gamma} = C_{\gamma}|Z(c_{\gamma})| = C_{\gamma}\frac{|G|}{|c_{\gamma}|}$
- RMK: From representation theory point of view cusps are interesting; call it "cusp representation"; knows about the geometry/modularity. SKETCH PF:
 - any rep $R=\bigoplus_{i=1}^n R_i^{\oplus a_i}$ for irreps R_i of finite group \sim multiplicities $a_k=\frac{1}{|G|}\sum_{\gamma=1}^n \chi(R)\chi_k(c_\gamma)|c_\gamma|$ for conj class c_γ ;
 - for centralizer rep: take $\chi(R)=|G|/|c_\gamma| \leadsto a_j=\sum\limits_{\gamma=1}^n \chi_j(c_\gamma) \in \mathbb{Z}_{\geq 0};$
 - centralizers weighted with cusp numbers (beyond the group theory), no reason should be a character (could be virtual char). But, explicitly check all $a_j=\sum\limits_{\gamma=1}^n\chi_j(c_\gamma)C_\gamma\in\mathbb{Z}_{\geq0}$

Summary

The Dangers of Moonshine

Brit facing 360 lashes in Saudi Arabia after being caught with homemade wine

RELATED STORIES

homemade wine in his car.